
B L A C K W O O D D E S I G N S

Requirements

SPECIFICATION & ANALYSIS

A U T H O R R A N D A L L M A A S

O V E R V I E W This is fascicle explores my ideas how to write and analyze a specification, that lends to a direct

realization in hardware and software.

B E N E F I T S Straight forward, testable designs, predictable behaviour

U S E S Embedded systems
Control systems

Copyright © 2017-2018 Blackwood
Designs, LLC. All rights reserved. No
part of this document may be
reproduced or transmitted in any form
or by any means, electronic or
mechanical, including photocopying
and recording, for any purpose,
without the express written permission
of Blackwood Designs.

F I L E : G:\My Documents\Requirements\Specification & Requirements analysis - 2018-5-

30.doc

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 ii

RANDALL MAAS has spent decades in Washington and Minnesota. He consults in embedded

systems development, especially medical devices. Before that he did a lot of other things…

like everyone else in the software industry. He is also interested in geophysical models,

formal semantics, model theory and compilers.

You can contact him at randym@randym.name.

LinkedIn: http://www.linkedin.com/pub/randall-maas/9/838/8b1

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 iii

PREFACE ..1

1 ORGANIZATION OF THIS FASICLE ...1
2 REFERENCE DOCUMENTATION AND RESOURCES ...2
3 THE DIFFERENT TYPES OF SPECIFICATION DOCUMENTS ..2

SPECIFICATION OUTLINE ..4

1. MAIN OUTLINE ...4
2. SYNOPSIS AND FRONT MATTER ..5
3. OVERVIEW ...5
4. DEFINITIONS ..7
5. REQUIREMENTS .. 10
6. OTHER WRITING TIPS .. 14

SPECIFICATION & REQUIREMENTS ANALYSIS .. 15

7. OVERVIEW ... 15
8. DEFINITIONS OF TERMS AND PHRASES ... 16
9. SIGNAL PROCESSING .. 22
10. ANALYZING REQUIREMENTS ... 23

REQUIREMENTS CHECKLISTS .. 24

11. REQUIREMENTS REVIEW CHECKLIST .. 24

ELECTRONICS DESIGN DESCRIPTION OUTLINE ... 27

12. MAIN OUTLINE .. 27
13. SYNOPSIS AND FRONT MATTER .. 28
14. DESIGN OVERVIEW ... 28
14.4.1 CONNECTOR DESCRIPTION ... 31
14.4.2 MANUFACTURING TEST CONNECTOR ... 31
14.5.1 DOG-BONES / SEVERABLE TEST POINTS .. 32
15. DETAILED DESIGN .. 32
15.1.1 POWER DISTRIBUTION TREE ... 34
15.1.2 POWER SOURCE .. 34
15.1.3 POWER DECOUPLING CAPACITORS .. 35
15.1.4 REVERSE BATTERY AND OTHER PROTECTIONS .. 35
15.1.5 POWER REGULATORS ... 35
15.1.6 MEASUREMENT... 35
15.2.1 LAYOUT ... 36

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 iv

15.2.2 SIGNAL CONDITIONING FOR ADC INPUTS ... 36
15.2.3 POWER SOURCE MEASUREMENT .. 37
15.2.4 POWER REGULATOR MEASUREMENT ... 37
15.2.5 TEMPERATURE MEASURE .. 37
15.3.1 RELAY .. 37
15.3.2 H-BRIDGE DRIVEN OUTPUTS .. 37
15.3.3 SMART FET DRIVEN OUTPUTS .. 37
15.4.1 THE DIGITAL POWER SUPPLIES ... 38
15.4.2 THE ANALOG POWER SUPPLIES .. 38
15.4.3 OPERATING MODES.. 39
15.4.4 MICROCONTROLLER STARTUP .. 39
15.4.5 CLOCKS .. 39
15.4.6 EEPROM INTERFACE ... 39
15.4.7 ADC: ANALOG (LINEAR) TO DIGITAL CONVERTERS .. 39
15.4.8 DIGITAL INPUTS AND OUTPUTS .. 41
15.4.9 SPI.. 41
15.4.10 UART INTERFACE .. 41
15.4.11 DEBUGGING INTERFACE .. 41
16. POWER CHARACTERISTICS .. 43
17. TRIM & CALIBRATION ... 43
18. THE SAFETY & INTEGRITY MODEL ... 44
18.3.1 POWER SUPERVISOR, BROWN-OUT DETECT .. 44
18.4.1 PWM BREAK FUNCTION ... 44
18.4.2 PERIPHERAL LOCKS ... 44
18.5.1 SRAM PARITY CHECKS .. 45
18.5.2 CLOCK FAILURE DETECTION .. 45
19. PIN MAPS .. 45
20. ELECTRONICS DESIGN ANALYSIS ... 46

SOFTWARE REALIZATION ... 48

21. OVERVIEW ... 48
22. BOARD CONFIGURATION / INITIALIZATION ... 48
23. PARAMETERIZED SIGNAL PROCESSING ... 49
23.1.1 CONVERTING FILTERS TO IIR FILTERS ... 49
23.1.2 SPECIAL FILTERS AND HOW TO SPECIFY THEM .. 50
23.2.1 TESTING ... 51
23.4.1 MAPPING A DECISION TABLE TO IF-THEN-ELSE (APPROACH #1) .. 52
23.4.2 MAPPING A DECISION TABLE TO DATA STRUCTURES (APPROACH #2) .. 52
23.5.1 SIGNAL STATE AND SIGNAL TRANSITION ... 54
23.5.2 TIMERS AND EVENT FLAGS ... 54
24. REALIZING REQUIREMENTS .. 54

APPENDICES .. 57

ABBREVIATIONS, ACRONYMS, GLOSSARY ... 59

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 v

COMMON NOUNS ... 62

PROPERTIES ... 66

COMMON CATEGORICAL VALUES & STATES.. 68

COMMON COMPARISON ... 69

COMMON EVENTS ... 70

CODE COMPLETE SPECIFICATION REVIEW CHECKLISTS .. 72

25. CHECKLIST: REQUIREMENTS ... 72

EQUATION 1: THE VOLTAGE RATIO FOR A RESISTIVE-DIVIDER ... 36
EQUATION 2: THE TIME CONSTANT FOR THE RESISTIVE-DIVIDER FILTER .. 36
EQUATION 3: THE ADC SAMPLING TIME ... 40
EQUATION 4: THE TIME CONSTANT FOR THE ADC INPUT .. 40
EQUATION 5: THE ADC CONVERSION TIME .. 40
EQUATION 6: THE ADC’S MAX INPUT FREQUENCY .. 40
EQUATION 7: FILTER TRANSFER FUNCTION ... 49
EQUATION 8: RECURSIVE FILTER EVALUATION .. 49
EQUATION 9: DC REMOVAL FILTER .. 50
EQUATION 10: EXPONENTIAL SMOOTHING FILTER CONSTRUCTION ... 50
EQUATION 11: MAPPING PID COEFFICIENTS TO IIR FORMULATION .. 50

TABLE 1: EXAMPLE TABLE OF DIAGRAM ELEMENTS .. 6
TABLE 2: EXAMPLE TABLE OF PROPERTY VALUE RANGES .. 8
TABLE 3: DECOMPOSITION OF EXAMPLE REQUIREMENT .. 12
TABLE 4: SUMMATION OF THE TYPICAL REQUIREMENTS PATTERNS. ... 12
TABLE 5: KIND INHERITANCE HIERARCHY ... 16
TABLE 6: INSTANCE KIND-OF AND DESCRIPTION .. 17
TABLE 7: PROPERTY TYPE DEFINITIONS .. 17
TABLE 8: THE PROPERTIES FOR KINDS AND INSTANCES .. 18
TABLE 9: ANONYMOUS PROPERTY TYPE DEFINITIONS ... 18
TABLE 10: ANONYMOUS PROPERTY TYPE DEFINITIONS ... 18
TABLE 11: COMPARATIVE DEFINITIONS ... 19
TABLE 12: COMPARABLE DEFINITIONS .. 19
TABLE 13: COMPARABLE DEFINITIONS FOR AN INSTANCE .. 19
TABLE 14: SUPERLATIVE DEFINITIONS ... 19
TABLE 15: HOW CLASSIFY STATE .. 20
TABLE 16: DESCRIPTION OF CONSTRAINTS ... 20
TABLE 17: DESCRIPTION OF EVENTS ... 21
TABLE 18: DESCRIPTION OF ACTIONS .. 21
TABLE 19: FILTER PARAMETERS ... 22
TABLE 20: REQUIREMENT LINK .. 23
TABLE 21: THE ELEMENTS EXTERNAL TO THE ELECTRONICS DESIGN ... 29
TABLE 22: THE ELECTRONIC DESIGN ELEMENTS ... 29

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 vi

TABLE 23: THE ELECTRONIC DESIGN ELEMENTS ... 34
TABLE 24: RESISTIVE-DIVIDER CHARACTERISTIC PARAMETERS .. 36
TABLE 25: UART PIN MAP ... 41
TABLE 26: SINGLE WIRE DEBUG PIN MAP ... 42
TABLE 27: XYZ CONNECTOR ... 45
TABLE 28: PROGRAMMING PIN MAP .. 46
TABLE 29: FILTER DESIGN TYPES .. 49
TABLE 30: PID PARAMETERS .. 50
TABLE 31: COMMON ACRONYMS AND ABBREVIATIONS .. 59
TABLE 32: GLOSSARY OF COMMON TERMS AND PHRASES ... 60
TABLE 33: COMMON NOUN ACRONYMS AND ABBREVIATIONS ... 62
TABLE 34: COMMON KINDS .. 63
TABLE 35: COMMON SENSORS .. 63
TABLE 36: COMMON ACRONYMS AND ABBREVIATIONS .. 66
TABLE 37: GLOSSARY OF COMMON PROPERTIES ... 67
TABLE 38: COMMON UNIT ... 67
TABLE 39: GLOSSARY OF COMMON CATEGORICALS ... 68
TABLE 40: COMMON COMPARATIVE DEFINITIONS ... 69
TABLE 41: COMMON COMPARABLE DEFINITIONS .. 69
TABLE 42: COMPARABLE DEFINITIONS FOR AN INSTANCE .. 69
TABLE 43: COMMON ACRONYMS AND ABBREVIATIONS .. 70
TABLE 44: GLOSSARY OF COMMON EVENTS ... 71

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 1

Preface

This fascicle – short document – focuses on developing a style of specification that that lends

itself to a direct (or nearly so) realization of in hardware and software.

This is a fascicle covering a specification, its definitions, requirements and the analysis of

these. It does not cover:

 Project management

 Requirements process or management

 Design architecture

 Engineering development process

1 ORGANIZATION OF THIS FASICLE
 CHAPTER 1: PREFACE. This chapter describes the other chapters and further reading

 CHAPTER 2: SPECIFICATION OUTLINE. Provides an outline for the structure and contents

of a specification.

 CHAPTER 3: REQUIREMENTS ANALYSIS. Describes how to analyze a specification and it’s

requirements.

 CHAPTER 4: REQUIREMENTS CHECKLISTS. This chapter provides checklists for reviewing

requirements.

 CHAPTER 4: ELECTRONICS DESIGN DESCRIPTION OUTLINE. Provides an outline for the

structure and contents of a design description of the electronics.

 CHAPTER 5: SOFTWARE REALIZATION. This chapter describes how to convert the

requirements into a (partial) implementation.

APPENDICES. The part provides supplemental material

 APPENDIX A: ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss

of terms, abbreviations, and acronyms.

 APPENDIX B: COMMON NOUNS. This appendix lists common nouns, including peripherals

and sensors.

 APPENDIX C: COMMON PROPERTIES. This appendix lists scientific units/dimensions.

 APPENDIX D: COMMON CATEGORICALS. This appendix lists the common categoricals.

 APPENDIX E: COMMON COMPARISON. This appendix lists the common comparables,

comparatives, superlatives.

 APPENDIX F: COMMON, WELL-KNOWN EVENTS. This appendix lists the common well-

known events.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 2

 APPENDIX G: CODE COMPLETE SPECIFICATION REVIEW CHECKLISTS. This appendix

reproduces checklists from Code Complete, 2nd Ed that are relevant to specification

reviews.

2 REFERENCE DOCUMENTATION AND RESOURCES
Arora, Chetan; Mehrdad Sabetzadeh, Lionel Briand, Frank Zimmer. “Automated Checking of

Conformance to Requirements Templates Using Natural Language Processing” IEEE Trans

Software Engineering, vol 41, n10, 2015 p944-967

Gilb, Tom. Planguage 1988

Gilb, Tom. Competitive Engineering, 2005 Butterworth-Heinemann

NASA “Appendix C: How to write a good requirement” in NASA Systems Engineering

Handbook

2.1 EARS: EASY APPROACH TO ENGINEERING

 Mavin, Alistair. EARS Tutorial Easy Approach to Requirements Syntax

 Rupp, Chris. “Easy Approach to Requirements Engineering” (EARS)

 Terzakis, John. EARS: The Easy Approach to Requirements Syntax

2.2 INSTRUMENTATION & SIGNAL PROCESSING
 Garrett, Patrick H. Advanced Instrumentation and Computer I/O Design: Real-Time

System Computer Interface Engineering, IEEE Press, 1994

 Redmon, Nigel Biquad Formulas 2011-1-2

http://www.earlevel.com/main/2011/01/02/biquad-formulas/

 Smith, Steven W “The Scientists and Engineer’s Guide to Digital Signal Processing,”

Newnes, 1997, http://www.dspguide

3 THE DIFFERENT TYPES OF SPECIFICATION DOCUMENTS
The documents – or portions of documents – discussed here include:

A high-level document is a finite set of requirements documents, e.g. system specification,

customer inputs, marketing inputs, etc.

A requirements document is a set of requirements, and clear text explaining or justifying the

requirements. A justification may base the requirement in other documents, such as research,

standards, regulations or other laws.

A requirement defines what an item must do, and is presented as text of a special form (to be

discussed throughout this fascicle).

A customer requirement is a requirement in any of the top-level documents.

A comment is a text. The comment’s text is not analyzed in this document

A test specification is a requirements document that describes a set of tests intended to check

that the product meets it requirements. This document defines:

 A set of test requirements that define what tests a product must pass.

high-level document

requirements

document

requirement

customer requirement

comment

test specification

test requirements

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 3

 A mapping, tests, that maps a test requirement to a set of requirements that it tests.

A design document explains the design of a product, with a justification how it addresses

safety and other concerns. TBD/Future needs a better description that better can link to input

requirements.

Requirements

specification

Requirements

Analysis

Software

realization

Electronics

design &

description

Note: the analysis is only that the specification can be built and tested – that there is enough

information to do so, and that it does not conflict. Analysis for whether the specification is

correct is separate and not covered here.

A test report is a set of outcomes: <test id, product id, result> describing how a product

performed under test. (The performance may vary with versions of the product)

An identifier can refer to product, specific version of the product, a document, requirement,

test, external document, or comment. In practice this is so important that each item is given a

label.

A trace matrix defines two functions, forming a directed acyclic graph:

 Maps a requirement to the set of requirements that it directly descends from

 Maps a requirement to a set of requirements that directly or indirectly descends from it.

A hazard analysis is a set of documents that define:

 Maps a harm to severity

 Maps a hazard x harm to likelihood

tests

design document

Figure 1: Intended flow

of documents

test report

identifier

trace matrix

hazard analysis

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 4

CHAPTER 2

Specification outline

This chapter describes the preferred outline for a specification:

 Main outline

 Synopsis & Front matter

 Overview

 Definition

1. MAIN OUTLINE

This chapter describes the preferred approach to writing a specification. The following is the

outline for a specification:

1. Synopsis

2. Other front matter. These, if part of a larger document, should be placed in the preface

or appendices of the larger work:

a. Glossary, acronyms

b. Related documents (documents that are part of the product)

c. References, resources, suggested reading

3. Overview

a. Diagram, calling out key items referred to

b. Walk-thru of the intended use of the product

c. Potted product specification

d. Feature list

4. Definitions

a. Kinds and entities

b. Properties and property values

c. Comparables, Comparisons, and Comparatives

d. Actions

5. Goals, Objectives

6. Requirements

a. Functional requirements

b. Detailed logical controller specification

c. Performance requirement

7. Analysis to support the design or requirements

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 5

[alternate forms – all of the definitions up front / or segmented out per group]

1.1. EDITING

Tip: use MS Word’s grammar checker, and readability statistics.

2. SYNOPSIS AND FRONT MATTER

THE SYNOPSIS. A one or two paragraph synopsis

THE RELATED DOCUMENTS, SPECIFICATIONS. Include a designator for each document. Use

this through the remainder of this specification to refer to the document.

THE REFERENCES, RESOURCES, SUGGESTED READING. Include a designator for each document.

Use this through the remainder of this specification to refer to the document.

THE ACRONYM AND GLOSSARY TABLES. Define all acronyms, terms and phrases. We have all

seen documents that include definitions for simple, common items (such as a LED), while not

defining specialized items (such as “adaptive linear filter”) referred to heavily in a document.

Don’t do this.

Tip: The acronyms and glossary are well suited for reuse in many projects. Make a stock

document with the most common terms and potted definitions to be included in each project.

3. OVERVIEW

The document should include an overview of the product. In practice, this should be two

(interrelated) overviews. The first is a big picture description – from the perspective of the

final product that the customer or operator receive. The second description is specific to the

sub-assembly product. In some cases, additional overviews would be a good idea to bring

into focus a very specific element within the big picture.

THE OVERVIEW should include:

 A diagram, calling out the particular items that will be discussed

 A description of what the product is, what role it serves, with some hint of its benefit

 A potted specification of the product

THE DIAGRAM. Each item in the document rest of the document should be called out thick call

out lines, often red. Number the items, and describe each in the text. Include the name or

designator that will be used throughout the rest of the document.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 6

The elements external to the remote control are:

 Element Description

1 Touch surface Swipe to navigate. Press to select. Press and hold for contextual menus

2 Menu Press to return to the previous menu.

3 Siri/search Press and hold to talk. Opens the onscreen search app.

4 Play/pause Play and pause the media.

5 Play/pause Press to return to the home screen. Press twice to view open apps. Press
and hold to sleep.

6 Volume Controls the TV value

7 lightning connector Plug-in for charging

THE DESCRIPTION of the product should capture what the product is, and its role. The

descriptions should include a walkthrough of its primary operations. This overview should

strive to be clear, and easy to understand. Assume that until the reader has seen this

description the use is non-intuitive. Select the language carefully, and define each of the

terms used.

THE FEATURE LIST(S). Include a list of the key features. For example:

 Can control the TV volume

 Can control media playback with a “Jog” control

 Can search for media with a voice command

Figure 2: Example

diagram with call-outs

Table 1: Example

table of diagram

elements

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 7

Tip: Similar (end) product-level diagrams and description may be used in many projects.

Make a template document with a typical diagram and description. This can be used as a

starting point in each related project.

4. DEFINITIONS

The next major section should define the terms and key phrases:

 Kinds and instances

 Properties and property values

 Comparisons, Comparables, Comparatives

 Classification table

 Constraints on values

 Actions

 Events

4.1. KINDS AND INSTANCES

Define the pieces, etc. that will be specified later. Be clear whether a noun phrase is…

 a specific, singular instance in the product; or

 A kind or class of thing that there may be many instances of.

yellow LED LEDA is a kind of

status LED yellow LEDThe is a

A kind

A kind

An instance

A kind

Defining a kind
Defining an instance

The kinds – and perhaps several of the instances – should be included in the glossary. These

are often common nouns. See Appendix B for well-known common nouns that need not be

defined each time.

The instances (and their kinds) may be well suited for being listed in a table. These are often

proper nouns.

The designator used to declare a kind or an instance should be used consistently throughout

the document. Avoid employing only a portion of the designator, pronouns or indexicals to

refer to it.

4.2. PROPERTY DEFINITION AND POSSIBLE VALUES

If there is a need to define properties, include a (sub)section to do so. (There are many trivial,

well-known properties; see Appendix C for examples. Usually, one does need not to define

these again. If there is any doubt, however, define the property.)

Define property by its name and its set of possible values. The set of values that a property

can take on are usually one of two kinds:

 Categorical (aka nominal),

 Scalar value; these often have a dimension and unit.

Figure 3: Kinds and

instances

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 8

gender male, female, or neuter

Set of categorical

values

Property declarations

Property name

A is

brightness numberA is a
Type

The properties should be included in the glossary. List the properties that a kind or instance

has. Not all properties have names.

LED brightnessA has a

LED on, or offA can be
Unnamed property with

a set of categorical

values

Scalar propertyName of a kind

The properties that a kind or instance may be well suited for being listed in a table.

4.3. PROPERTY VALUES

Define the property values for each given thing, if they have not been defined yet.

warning LED yellowA is

LED on, or offA can be
Unnamed property with

a set of categorical

values

Categorical value

The property values are often well suited for being listed in a table:

property min max

image width 240 pixels 240 pixels

image height 216 pixels 216 pixels

data rate 9600bps 115000bps

stop bits 1 1

operating current - 130mA

operating voltage 3.3v 6v

Note that the property’s meaning is defined earlier. The definition includes whether the

subject provides the given property value, or operates correctly values with values in the

range.

4.4. DEGREES OF COMPARISON: COMPARABLES, COMPARATIVES AND
SUPERLATIVES

In some cases it is useful to define comparable adjectives on a kind or instance. (This is

relatively rare, as it is unnecessary most ‘well-known’ comparisons on scalar properties. See

Appendix E for well-known comparisons.) These relate a property’s value to a binary relation.

Figure 4: Property

declarations

Figure 5: Properties

of kinds and instances

Figure 6: Property

declarations

Table 2: Example

table of property value

ranges

comparisons and

superlatives

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 9

brightnessbrighterA isLED when the greateris

Kind or

instance

Comparable

adjective

Comparative

adjective

Comparative

adjective

Property

brightnessbrightA isLED when the greateris than 80

brighterbrightA isLED when than 80

Comparison

binary relation

Superlatives. such as “brightest of a set.” That element is compared against all others, and

found to have passed the tests

brighterbrightestA isLED when it is than all others

Kind or

instance

Superlative
Comparative

adjective

dimmerdimmestA isLED when it is than all others

4.5. DERIVED PROPERTIES: MAPPING TO STATES OF PROPERTIES TO AN
ENUMERATED VALUE

This section how to map states of properties to an enumerated (aka nominal or categorical)

value. These are often used to identify a state, classify, or action (from a set). Decision tables

(aka classification table) are commonly used to maps the input conditions to an output state:

Condition Outcome

Name of output,

state variable

Name of inputs,

state variables

Nominal value /

name

Extra / diagnostic

info

Value, or

value set

The rows should not compete or conflict.

 The columns names identify the instance and property. A column name may also

specify that it refers to the value at the previous time step. (Without this specification,

the column refers to the value at the current time step.)

 Values (or sets of values), are in the cells. Note: expressions such as “< 23” are

treated as a set of values (the set all numbers less than 23)

 Values not defined in the conditions are meant to be interpreted as “any value is

acceptable.”

 Cell may also specify another property name or value. Note interpretation order in

this case.

 All outcomes must have a defined value.

Describe the default value to use when no row matches

Figure 7:

Comparative

definitions

Figure 8: Superlative

definitions

classification table

Figure 9: Property

lookup table

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 10

4.6. CONSTRAINTS ON VALUES

Example of a constraint:

The sum of the current must be less 20mA.

4.7. ACTIONS

The key actions & activities of the product should be defined. Fortunately, not all actions

need be spelled out in detail. Examples of actions whose detailed steps may be skipped:

 If the action is well-defined in a sourced document,

 If the action is trivial, obvious and states the outcomes, such as the light being on.

The elements of a good action description:

 Actions should have their outcome stated, or be clear from the text. For example

“turn the yellow LED on” is clear that the resulting state of the yellow LED is “on.”

 If the action is defined in a sourced document, reference that document and its

relevant portions explicitly.

The state of the world when it ends.

Actions can take time, and so have a beginning, middle, and end. Specify the minimum and

maximum duration. Specify testable elements or parameter values during the time from

beginning to end. These requirements are usually definitions of what vague qualities such

“smooth” mean. For example as ramping.

 [diagram]

The maximum and minimum slope.

Actions are often built on other requirements (and actions), along with parametric

requirements to accomplish the action correctly.

Describe the steps to take to carry out action. Each step will [?] to be tested. If description is

based on other actions be sure to define them too.

4.8. EVENTS

[todo describe named events]

5. REQUIREMENTS
A requirement defines what an item must do, and presented as text in a special form.

Requirements are the means of assuring correct operation in the process of design and

construction. The purpose of a requirements-driven process is to promote a cultural discipline

that focuses and attention to build the quality products. This quality is often focus on safety

aspects.1

1 Although it would seem to be a process focused on building the product the parent organization wants, the process

was only (historically) shaped to meet safety goals. There were (and are) other processes, but they did less well

with safety.

constraints

actions

Figure 10: Example

diagram of activity

qualities durations

requirement

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 11

A text should be separated from the text like:

Explanatory,

descriptive text

Motivation, rationale

text

Identifier

id requirement
Requirement text

text

The presentation of a requirement in the text should include:

 Clear demarcation of the requirement. For instance, place the requirement on an

indented line, by itself.

 A means to uniquely identify or refer to the requirement. It is important to be able to

identify the requirement be discussed. The requirement will be referred to in other

documents, trouble tracking, etc.

 A brief summary of the requirement and its purpose or intent.

 The actor who carries out or meets the requirement. The actors should be defined

earlier in the section or the document.

 What the actor is to do

 Time bounds: how fast, etc

 What value and bounds

 Rationale, the description of the requirements role, purpose, motivation, and/or intent

must be clear and readable

5.1. PROPERTIES OF A GOOD REQUIREMENT

A well-written requirement exhibits the following characteristics:

 Complete – contains sufficient detail to guide the work of the developer & tester

 Correct – error free, as defined by source material, stakeholders & subject matter

experts

 Concise – contains just the needed information, succinctly and easy to understand

 Consistent – does not conflict with any other requirement

 Unambiguous – must have sufficient detail to distinguish from undesired behaviour.

includes diagrams, tables, and other elements to enhance understanding

 Verifiable (or testable) – when it can be proved that the requirement was correctly

implemented

 Feasible – there is at least one design and implementation for it.

 Necessary – it is traced to a need expressed by customer, user, stakeholder;

Figure 11: Typical

requirement text

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 12

 Traceable – can be traced to and from other designs, tests, usage models, etc. These

improves impact assessment, schedule/effort estimation, coverage analysis scope

management/prioritization

5.2. THE SYNTAX OF REQUIREMENTS

The grammar used to refer to items, properties, actions, conditions, etc. should be consistent

among the requirements. It should be rare that there is more than one-way use to express a

clause. Below is a specific, stylized syntax for the requirements.2 The generic syntax for

requirements is:

The [actor] shall [action] <optional object> <optional trigger> <optional

preconditions>

The table below synopsizes the main elements of the requirement:

actor the system

action create

object an invoice

trigger When an order is shipped

precondition and the order is not prepaid

Requirements of the same “type” should employ the same format. Tip: maintain a handbook

of templates or examples to represent key (or common) types of requirements. The types of

requirements and their typical phrase patterns:

Type Pattern Notes

Ubiquitous The [actor] shall [action] <optional object> Requirement is always active

Event-driven The [actor] shall [action] <optional object> when [trigger]
<optional precondition>

Required response to a triggering

event

State-driven The [actor] shall [action] <optional object> while [state] Required response in a specified

state

optional The [actor] shall [action] <optional object> where [feature
included].

Applicable only if feature is

included

unwanted The [actor] shall [action] <optional object> if [unwanted
condition /event].

5.3. REQUIREMENT FOR UBIQUITOUS BEHAVIOURS

Ubiquitous requirement states a fundamental system property or behaviour. It defines system

behaviour or features that must be active or present at all times. This form of requirement has

the template:

The [actor] shall [action] <optional object>

For example:

FOOBAR123: The product shall provide a connector to the mains power.

2 Based on EARS. EARS has a slightly different normal order. I have kept the subject at the head of the sentence in

each case.

Table 3:

Decomposition of

example requirement

Table 4: Summation

of the typical

requirements patterns.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 13

Note: This form of requirement is rare. When reviewing, look for missing triggers and other

conditions on the requirement.

5.4. REQUIREMENT FOR EVENT-DRIVEN BEHAVIOURS
Event driven requirements are initiated only when a triggering event is detected. The trigger

must be something that the system itself can detect. This form of requirement has the

template:

The [actor] shall [action] <optional object> when [trigger] <optional

preconditions>

For example:

FOOBAR124: The light driver shall turn the light off if light switch is set to the off

position.

See section 4.7 for descriptions of an action,

Notes on the trigger can be:

 A defined (named) event (see section 4.8)

 When a property changes to a value

 When a property changes from a value

Notes on the optional pre-conditions – may need to differentiate state and pre-condition…

5.5. REQUIREMENT FOR STATE-DRIVEN BEHAVIOURS
Requirement is active while the actor is in a defined state

Requirement is “continuous”, but only while the system is in the specified state. This form of

requirement has the template:

The [actor] shall [action] <optional object> while [state]

Example

See section 4.7 for descriptions of an action,

See section TBD for descriptions of state. Usually an internal, “hidden” state, rather than

conditions of properties

5.6. REQUIREMENT FOR OPTIONAL FEATURES
 This form of requirement has the template:

The [actor] shall [action] <optional object> where [feature included]

Example

See section 4.7 for descriptions of an action,

5.7. REQUIREMENT FOR UNWANTED BEHAVIOURS

This is a variation of event-driven requirement. The trigger or condition is one that is

unwanted, error condition, failure, fault, disturbance, etc. This form of requirement has the

template:

The [actor] shall [action] <optional object> if [unwanted condition/event]

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 14

Example

See section 4.7 for descriptions of an action,

5.8. COMPLEX REQUIREMENTS
These employ decision tables, and other forms.

6. OTHER WRITING TIPS

For each element in the document: is it the right kind of document? Does it specifies what the

product does, how it behaves and performs. Does it specify implementation or design? If so,

remove that. {Don’t tell me how to do it when you don’t know how to do it.}

 Use only a single “shall” and only a single action per requirement

 Do not use adverb disjunctions, or adverb adjuncts.

 Do not use uncomparable adjectives.

 The requirement should clearly specify the actor and what it should do – how it

should behave.

 Do not couch a specific implementation as a requirement.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 15

CHAPTER 3

Specification &

Requirements

Analysis

This chapter describes how to analyze a specification and its requirements:

 Overview

 Definition of terms and phrases

 What to look for

 Signal processing

 Requirements

 How to decompose and organize the information

7. OVERVIEW

The analysis is intended to identify and organize the definitions of terms and key phrases:

 The nouns and actors – that is, the kinds and instances

 The properties of the nouns, and their allowed values and constraints

 The states and enumerations

 The key, well-known events

 The actions – the definitions of actions in specific cases

 The conditions

7.1. STEPS IN THE ANALYSIS PROCESS

The steps in the process of analyzing requirements is:

1. Identify the kinds of things being referred to (or discussed)

2. Identify the sets of properties that an entity may have

3. Identify the set of acceptable property values for each property

4. Identify the states that are composed of or identified by property values

5. Identify the constraints on the property values

6. Identify the events that may occur

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 16

7. Identify and define the actions that may occur

The process of breaking the process out into small steps is to:

1. Manage complexity

2. Support test /debug that conditions are met

3. Systematic mechanical rules to go from requirements to implicit.

8. DEFINITIONS OF TERMS AND PHRASES

This will define the nouns and their modifiers:

 Things – e.g. the actors

 The kinds of things

 The properties that things (and kinds of things) may have

 The values that properties may have

 How to compare properties and values

 The derived properties

Scan the source documents and build up a lexicon. The development in this section parallels

section X in chapter 2. The source documents includes

 Requirements specifications for this subsystem,

 Requirements documents for each of the larger systems that it is part of

 Top-level design documents for the electrical function of this subsystem (if one

exists)

 Top-level design documents for the larger system that this is part of

 Documents refer to by each of the above.

8.1. DEFINITIONS REVIEW

Reviewing should look to identify:

 Is the definition clearly demarcated?

 Is the definition duplicated? Do the definitions conflict?

8.2. KINDS AND INSTANCES

Go thru and build table of what kind of things each kind is. Note: see the appendix for a

common stock of kinds of things.

Kind Kind of Description

yellow LED LED A kind of LED used for status

Table 5: Kind

inheritance hierarchy

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 17

Instance Kind of Description

Status LED yellow LED A kind of LED used for status

CAN interrupt
handler

interrupt handler

DMA

Common nouns are kinds;

Proper nouns are often instances.

An instance can be a “kind” of several things; a kind can be a kind of several other kinds of

things too.

The ancestors of a kind or instance is the set of all kinds of things it may be… this includes all

of the ancestors of those kinds.

Check:

 Is each instance or kind referred to in a consistent, uniform manner?

 Are each of the ancestor kinds known – are there some that are undefined?

8.3. PROPERTY DEFINITIONS AND POSSIBLE VALUES

Go thru the specification and build a table of the properties. Note: see the appendix for a

common stock of dimensions and their units.

Property Kind of Dimension Possible values

brightness number lumens

gender {male, female, neuter}

The set of values that a property can take on are usually one of:

 Categorical (aka nominal) properties include a set of values it can take on,

 A scalar property, these often have a dimension (which may it’s own a preferred

units). These may also have a set of values that it may take on; usually they are range

of allowed values.

Check:

 Is the property is referred to in a consistent, uniform manner?

 Is the value kind and possible values suitable for the given dimension? For instance, a

dimension of “length” cannot meaningfully take on possible values of “red, male,

squirrel”

Table 6: Instance

kind-of and description

common nouns

proper nouns

ancestor

Table 7: Property type

definitions

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 18

8.4. WHICH PROPERTIES A KIND OR INSTANCE MAY HAVE

Create a table of the properties kinds and instances have.

Kind / Instance Properties

yellow LED brightness

A property should be defined only once a given ‘kind’ hierarchy:

 If the property is defined for both an instance, and its kind (or one of its ancestor

kinds)… it should be defined only for the kind.

 If the property is defined for a kind and for one of the kind’s ancestors, it should be

defined only in the ancestor.

An instance or kind may have anonymous, unnamed properties. Fill in the table:

Kind/Instance Kind of Dimension Possible values

LED {on, off}

If a set of possible values is identical to that of any of the property the instance, kind or

ancestor has, investigate if that property should be used.

8.5. PROPERTY VALUES

An instance or kind may further specify the range of values for a property, or even a specific

value for the property:

Kind/Instance Property Possible values

image width 240 pixels
 height 216 pixels

UART data rate 9600bps .. 115000bps

 stop bits 1

main board operating current ≤130mA

 operating voltage 3.3v .. 6v

If a set of possible values is identical to that of any of the property the instance, kind or

ancestor has, investigate if that property should be used.

8.6. COMPARISON: COMPARATIVES, COMPARABLES, AND SUPERLATIVES

Look for the definition (often implicit) of comparable or comparative adjectives, and build a

table of these relations. For properties, this can be a regular change in affix from the base

property name. (See the appendix X for a table of common comparable and comparatives). If

Table 8: The

properties for kinds

and instances

Table 9: Anonymous

property type

definitions

Table 10: Anonymous

property type

definitions

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 19

the text is defining a comparable or comparative, look for the comparison relation. The

comparison function should match the underlying domain.

Adjective Property Comparison

brighter brightness >

A comparable adjective should define a value set to compare against. Note: a comparable

may define itself based on the comparison relation, or in terms of a comparative. In the case

of the later, use the property and comparison relation from the comparative.

Adjective Property Comparison Auxiliary

brighter brightness >

bright brightness > 80

In some cases it is useful to define comparable adjectives on a kind or instance.

Kind/instance Adjective Property Comparison Auxiliary

 brighter brightness >

 bright brightness > 80

Check:

 Is the comparison relation supported by the underlying domain (kind) of the property?

 Do comparables have a value set defined to compare against?

8.7. SUPERLATIVES

Superlatives select a single item (or set) from a set of candidates. Look for the definition

(often implicit) of superlative relations, and build a table of these. For properties, this can be

a regular change in affix from the base property name, or comparative adjectives. (See the

appendix TBD for a table of common superlatives).

Adjective Property Comparison

brightest brightness >

Note: a superlative may define itself based on the comparison relation, or in terms of a

comparative. In the case of the later, use the property and comparison relation from the

comparative.

Table 11:

Comparative

definitions

Table 12: Comparable

definitions

Table 13: Comparable

definitions for an

instance

Table 14: Superlative

definitions

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 20

8.8. DERIVED PROPERTY: MAPPING TO STATES OF PROPERTIES TO AN
ENUMERATED VALUE

Look for definitions mapping of property values or subsystem states to so some state of the

system definition and build tables of these. (This can be thought of as defining a property in

terms of more fundamental properties.)

Inputs Outcome Description

v1 v2 v4 v4

state etc off 1..3 state

Define the inputs to the classification; these can be the name of any earlier defined property,

or subsystem state. Fill in the input cells with sets of acceptable values for that rule. And the

outcome that combination maps to.

Check:

 Check that the input values are in the domain (value set) for their respective

properties.

 Check that the outcome values in the value set for the property.

 Variables are not listed twice

 The outcome variable is not also an input at the same table; The previous value of the

outcome variable may be used as an input.

 Ambiguity: Can the inputs be interpreted different ways? Is there sufficient detail to

distinguish one outcome state from another? Are multiple outcomes selected by the

same input?

 Vagueness: Are there combinations of inputs that do not have a defined outcome?

 Acyclic: the input variables do not refer to current-time-step value of a state/property

that directly or indirectly derives from the current-time step value of this state

classification.

8.9. CONSTRAINTS

Table of what property values rules. These constitute acceptable states of the system.

Expression Relation comparison
expression

Description

Check:

 Is the constraint tautologically true or false?

Table 15: How

classify state

Table 16: Description

of constraints

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 21

 Is there a conflict between the constraints?

8.10. EVENTS

Look for definitions of key, named events. (See the appendix TBD for a table of common

well-known events). These have a name, rather than “property X taking on value Y.” For

instance: start up, power on reset, out of seat, engine start, engine kill.

Instance/Kind Event Description

yellow LED blink

Check:

 Are the events something that the system can detect?

8.11. ACTIONS

Look for definitions of key actions. (See the appendix X for a table of common well-known

actions).

Instance/Kind action Description

yellow LED blink

Identify

 The actors. These should be instances (not all instances will be actors)

 The item acted upon (optional). This should be an instance of the hardware

 The actions

Actors and the set of actions that it can take. The set of states that a thing can be in.

Actions:

 The outcome, such as the state of a property or multiple properties

 Value setting of a noun

 Specific steps. Each step is also an action. Check for circular definition

Identify the outcomes of the action

Identify the performance requirements, the time points of the action: how fast?

Check:

 Are the actions something that can be accomplished?

 Are the actions testable?

 What is the outcome of the action? Is the outcome testable?

Table 17: Description

of events

Table 18: Description

of actions

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 22

8.12. CROSS REFERENCE TABLES

It is helpful to the analysis to construct cross reference tables:

 Map kind and instances to the set of all ancestor kinds

 Map property name to instances/kinds holding it;

 Map possible value to the property name (table X), or state classification table

 Map name to event definition / description.

 Map possible value to instance anonymous property

 Map action names to action definitions

9. SIGNAL PROCESSING

9.1. FILTER SPECIFICATION

Depending on the type of filter specified which parameters are needed. Identify the type of

filter being specified and that it has defined its key parameters. The types of filters supported

include:

Filter Parameters to specify

Band-pass filter low cut-off frequency and high cut-off frequency

Band-stop filter see notch filter

DC removal Aggressiveness coefficient

Equalizer

Exponential smoothing Smoothing coefficient

High-pass filter cut-off frequency

High-shelf filter shelf frequency

Low-pass filter cut-off frequency

Low-shelf filter shelf frequency

Notch filter low cut-off frequency, high cut-off frequency

Peak filters peak frequency

PID control loops Max overshoot

Spike removal filter

9.2. SIGNAL PROCESSING SPECIFICATION REVIEW

Check that the filters have specifications for all of the relevant parameters.

9.3. CONTROL LOOPS

Some quality characteristics to define for a control loop:

 Max ripple

 Max overshoot

Table 19: filter

parameters

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 23

 Response time

 Max error

10. ANALYZING REQUIREMENTS

There are three top level parts

 The trigger

 An optional time between the trigger and initiating the action. Such a timer is usually

cancellable.

 The action to carry out

The trigger can be

 A Boolean expression on a property, and/or

 The start of another action, and/or

 The end of another action

Note: some implicit events:

 Named events (see section XLINK)

 When a property or state changes to a value

 When a property or state changes from a value

 When an action starts

 When an action ends

 What value and bounds

 Rationale, the description must be clear and readable

Trigger Delay Action Description

Table 20:

Requirement link

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 24

CHAPTER 4

Requirements

Checklists

This chapter summarizes the requirements review checklists

 Requirements review checklist

11. REQUIREMENTS REVIEW CHECKLIST

See also

 Appendix G for the Code Complete Requirements Review check lists

Names:

 Are the names clear and well chosen? Do the names convey their intent? Are they

relevant to their functionality?

 Do they use a good group / naming convention (e.g. related items should be grouped by

name)

 Is the name format consistent?

 Names only employ alphanumeric characteristics?

 Are there typos in the names?

11.1. ARE THE PROPERTIES, STATES AND ACTIONS WELL DEFINED?

 Is a definition duplicated?

 Is a property defined multiple different times.. but defined differently?

 Are the definitions complete?

o Are all instances and kinds defined – or some missing?

o Are there undefined (i.e., referred to, but not defined) nouns, properties, verbs?

o Are events referred to but not defined?

 Are they consistent?

 Are the properties something that the system can measure or otherwise detect?

 Are the instances something that the system can identify or otherwise distinguish?

 Is a state not needed? Is it unused by any state classification, action, event, or

requirement?

 Is a property not needed? Is it unused by any state classification, action, event, or

requirement?

 Are the properties something that the system can detect?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 25

 Are the events something that the system can detect?

11.2. REQUIREMENTS REVIEW

Reviewing requirements should look to identify:

 Are the requirements organized in a logical and accessible way?

 Is the requirement clearly demarcated?

 Does the requirement have a clear and fixed identifier? Is the identifier unique?

 Is the description supporting the requirement clear? Is it sufficient to support the

requirement?

 Is the requirement too wordy? A requirement should be concise, containing just the

needed information.

 Does the requirement use the proper modal auxiliaries?

 Does the requirement have the right conditions? The ubiquitous form of requirement is

rare. Look for missing triggers and other conditions on the requirement.

 Are the time-critical features, functions and behaviours identified? Is the timing criteria

specified?

 Is there requirement declarative? Or is the requirement an attempt to repackage an

existing implementation with imperative statements? These are bad.

 Does the requirement conflict with any other requirement? Is its use of conditions (e.g.

thresholds) consistent with the other requirements?

 Is the action to carry out clear? Is the action well defined within the rest of the

specification?

 Are the actions something that can be accomplished?

 Duplicated requirements?

 Ambiguity. Can the requirement be interpreted different ways? Is there sufficient detail

to distinguish from undesired behaviour?

 Is the requirement vague or ambiguous in any way? Pronouns, demonstratives, and

indexicals often introduce ambiguity.

 Is the requirement specifying a single action.. or many? A requirement should specify

only a single action.

 Complexity. Is the requirement over specified, too complex?

 Requirements that are too expensive, burdensome, impractical or impossible

 Are the requirements ones that fit the practical use with customer wants/needs/etc?

 Is the requirement unnecessary? Does it lack a trace to a need expressed by customer,

user, or stakeholder? Is each requirement traceable to a customer that requires it?

 Check for consistency and sufficient definition

 Does the requirement have errors, such as misstating bounds, or conditions in the source

material, or from other stakeholders or subject matter experts?

 Are there missing requirements? Is there a lack of sufficient detail to guide the work?

11.3. ARE THE REQUIREMENTS TESTABLE

 Are the triggers something that the system can detect?

 Is the action or result of the requirement observable? Can it be measured?

 Are the quality requirements measurable?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 26

 Is the requirement time bound? Is there a clear time bounds between the condition or

trigger, and the action?

 Is the requirement untestable? Is there a direct means of stating how to test that the

requirement was correctly implemented?

 Is the actor to carry out or meet the requirement clear? Is the actor well-defined within

the rest of the specification?

 Are the actions testable? Is their outcome testable?

 Is the requirement bounded? Or is the actor allowed to do the requirement at the end of

the universe?

11.4. THE LEADS REVIEW REQUIREMENTS:

 Are they complete? Are requirements or definitions missing? Are there undefined

nouns, properties, verbs?

 Are they consistent?

 Are they doable?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 27

CHAPTER 5

Electronics design

description outline

This chapter describes the preferred outline for an electronics design description:

 Main outline

 Synopsis & Front matter

 Overview

 Detailed design

 Power characteristics

 Trim and calibration

 Connectors & Pin Maps

12. MAIN OUTLINE

This chapter describes my preferred approach to writing a design description. The role of a

design description is to communicate with future electronics maintenance, software and test

teammates; and to reduce the puzzles and mysteries in being handed a completed electronic

design and being expected to make it work/modify it/test it. The following is the outline for a

design description:

8. Synopsis

9. Other front matter. These, if part of a larger document, should be placed in the

preface or appendices of the larger work:

a. Glossary, acronyms

b. Related documents (documents that are part of the product)

c. References, resources, suggested reading

10. Overview

a. The list of features that the electronics is responsible for

b. A basic block diagram of the electronics designs organization, calling out

key items referred to in the document

11. Detailed design

a. Detailed block diagram of the electronics designs organization. This should

include the connectors, power management, sensors, drivers,

microcontrollers and other subsections that will be described in detail in the

rest of the document.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 28

b. Module (physical) connectors

c. Clocks

d. Sensors, the signal chain and other inputs to the microcontrollers

e. Safety / self-protect circuitry. This includes reset supervisors

f. Driver circuit(s)

g. Microcontroller

12. The power systems, distribution, characteristics.

13. System model / equations for key modes. How to perform specific operations &

tasks. Control equations. Analysis to support the design or requirements.

14. Pin-maps

13. SYNOPSIS AND FRONT MATTER

THE SYNOPSIS. A one or two paragraph synopsis of what the modules is and its role in the

product is.

THE RELATED DOCUMENTS, SPECIFICATIONS. The documents to list internal organization &

project standards, and design specifications. Include a designator for each document. Use

this through the remainder of this specification to refer to the document.

THE REFERENCES, RESOURCES, SUGGESTED READING. The documents to list include data

sheets, industry and legal standards, communication protocols, etc. Include a designator for

each document. Use this through the remainder of this specification to refer to the document.

THE ACRONYM AND GLOSSARY TABLES. Define all acronyms, terms and phrases.

14. DESIGN OVERVIEW

Describe the role and responsibility of the electronics. Include the features that it is

responsible for.

 Overview

 Power sources

 Physical electrical connections

 Test pads

 Calibration

Include a diagram summarizing the electrical design, with the major sections and their

interconnections. This may include a reference to external elements that it controls or

depends on.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 29

Shooter

Pneumatic /

Solenoid

Motor

Controller

Motor

Controller Drive Motor
Drive Motor

RoboRIO

WiFi

Motor

Controller
Sensors

WebCam
NavX

Raspberry

Pi
Camera

Pneumatic

Controller

Power

distribution

board

Encoder

Limit switch

Note: this is an illustrative diagram, but won’t be thematically

Provide a description of the system elements external to the electronics design:

External element Description

element 1 Description of the element

…

element n Description of the element

Provide a description of the main elements of the electronic design:

Element Description

element 1 Description of the element

…

element n Description of the element

14.1. TIP: A CATALOG OF COMMON ELEMENTS/SUB-MODULES

I recommend employing a “recipe book” or catalog of common design elements. The catalog

should be organized by function – that is, grouping related modules together. The designs

(recipe) should have:

 A unique identifier for the design (to distinguish between them). The identifier

should indicate the function group of the design

 A reference schematic

 Potted, reusable text describing the role, function, behaviour, etc of the module

Figure 12: Elements

of the design as it fits

in the overall system

Table 21: The

elements external to

the electronics design

Table 22: The

electronic design

elements

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 30

14.2. NOTATION & NAMES

A good notation for naming eases understanding of how the sub-products work together. The

following areas should use a related naming notation:

 Electronic modules / subsystems

 EE schematic wires/pins

 Software modules

 File names

 Procedure/function names

 Type names

 Variable names

My preferred order is (left to right) Module kind, instance identifier, role & driver & polarity.

These elements should separated by underscores. The notation elements to distinguish a

particular module would look like:

_

Instance # or id

Module kind

 The module kind; the table(s) of abbreviations and acronyms is a good place start for

identifiers for kinds of modules.

 A means to distinguish between different instances of the module, if there is (or may

be) more than one instance. This may be a number or alphanumeric designator.

Tip: do not depend on capitalization. A name should have a suggested or preferred

capitalization. However, two different items must have names that differ in more than just the

capitalization. For instance, “RESET” and “Reset” must refer to the same item (e.g. signal).

The signal lines should be identified with a notation such as:

__

Instance # or id

Module kind

Signal identifier

Other elements of the identifier can optionally indicate:

 The role e.g. data, chip select, clock

 The driver of the pin, usually relative to the microcontroller:

 The polarity: active high, active low, open drain, open collector

14.3. POWER SOURCE

Describe the intended energy source of the module. Is energy applied all of the time? What

is the envelope of power that it can support? Does it have user serviceable batteries?

Are there expectations on the user?

 Does it need to be recharged?

 Is the operator expected to regularly change the batteries?

Figure 13: Module

identifier notation

Figure 14: Signal

identifier notation

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 31

14.4. PHYSICAL ELECTRICAL CONNECTIONS

This section provides summarizes each the connections to motor driver. There connectors

providing power, communication, sensors and tuning are:

 Battery power connector

 Battery communication connector

 Diagnostic port(s)

 Manufacturing test connector

 Programming/Debugging port

 UART connector(s)

Describe the connectors providing power, communication, etc

Table of the connectors

Describe each connector (an example section is below)

14.4.1 Connector description

Type of connector

 [diagram Schematic of the interface]

Connector identifier (see notation above)

Connector pin identifiers (see notation above)

Signal to reset of schematic (see notation above)

[table]

14.4.2 Manufacturing test connector

The electrical design will provide test points and/or test access sufficient to support design

verification, manufacturing operations and manufacturing test. This includes a connector for

manufacturing test & debugging.

The connector includes an [TBD, uart?] interface. These are used for testing the module, and

to configure it. See [tbd xlink] for a discussion of manufacture time testing. For

manufacturing test, the connector footprint will engaged with a test fixture. In a development

environment, an adapter cable (available from [TBD]) will be used to connect to debugging

tools. The footprint is shown below.

[diagram connector footprint]

Below shows a shortened, representative, image of the cable. A second adapter will be used to

mate it with any debugging or desk programming tools:

[diagram cable]

The connector that mates with the circuit board looks like:

[diagram mating connector]

Figure 15: Connector

ABC and it’s interface

Figure 16: Foot print

for the manufacturing

connector

Figure 17: Debug

cable

Figure 18: Detailed

view of the connector

pins

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 32

14.5. TEST PADS

The electrical design should provide test points and/or test access sufficient to support

development, design verification, and manufacturing test. Describe the pads, their intended

role.

See section 14.2 for suggestions in labeling the test pads.

14.5.1 Dog-bones / severable test points

Dog-bones may be employed to remove optional circuits, allow measuring current flows,

injecting signals or allow testing signal failures.

14.6. CALIBRATION

Will there calibration be needed in the product? Is per design, or per unit? What aspects will

need to be calibrate? For instance:

 Crystal trim

 Temperature coefficients

Who will trim or calibrate these? Will they be stored? Where will they be stored?

15. DETAILED DESIGN

This section delves into more detail regarding the electronic design. Include a diagram

summarizing the design, with the major sections and their interconnections. This may

include a reference to external elements that it controls or depends on. A typical block

diagram looks like:

Battery SWDButtons

Regulator

Supply

Monitor

Drivers

Peripheral

Sense

Microcontroller

SMBus

/ I2C

VDD/

VDDA

R
E

S
E

T
P

W
M

A
D

C

S
W

D

ADC

ESD Protection

Supervisor

G
P

IO

ESD Protection

G
P

IO

Conditioning

The major sections of the design include:

 The electrical connectors are in the top row (or left column or …).

Figure 19: Detailed

block diagram of the

product

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 33

 The power management is in the left column (or bottom row or …).

 The microcontroller is in {color}.

 The sensors are in {color}.

 The motor driver is in {color}.

 The supervisors – e.g. short/stall/over-current detection – are in {color}.

Plan to discuss:

 Power source, regulation, protection

 Sensors, signal conditioning

 Outputs, drivers e.g. relays, smart FETs, etc.

 Microcontroller

 Communication

 Data Storage

 Trim and calibration

 Temperature operating range

15.1. POWER SOURCE & REGULATION

This section is where the designer describes how energy is:

 Stored,

 Replenished,

 Distributed to the electronic elements, and the external elements,

 How the energy is converted to a useful form. How it is converted to internal forms

of power; how it is applied to work. Note: often the work is done by elements that the

electronics support, but a discussion of this is still mandated.

 How the energy is managed:

o How the capacity is measured

o How the flow and/or utilization is measured

o How it is enabled and cut-off

 The limits of the system:

o The maximum energy that can be stored,

o The maximum flow,

o Limits to power distribution

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 34

15.1.1 Power distribution tree

Designs will include some method to distribute electrical power to the components. Describe

the power distribution:

Talon SRX

Brushed speed

regulator

Battery

Thermal

Circuit

Breaker

Motor

Controller

Voltage

Regulators

Power

Distribution

board

12V 2A & 500mA

5V 2A & 500mA

Talon SRX

Brushed speed

regulator

Power To motor

CAN Input

Pneumatic

Controller

CAN Input

CAN Measurements

To solenoid

13.5V – 15v

Provide a description of the main elements of the electronic design:

Element Description

Battery The energy is supplied by a rechargeable Lithium Ion battery.

Pneumatic controller Used to drive the solenoid to release air from the pneumatic tanks. The release is enabled
by a CAN command.

Power distribution board Distributes power from the battery. It has individual fuses, and reports – via CAN – the
current flowing thru.

Talon SRX brushed speed
regulator

Used to run the brushed motors. It may take a feedback from an optional encoder. The
speed is set by a CAN command.

Thermal circuit breaker This is a circuit breaker used to protect the battery, wiring and electronics in the event of a
short circuit or overload condition.

Voltage regulators The regulators ensure that a specific, fixed voltage is applied despite the changing battery

voltage.

15.1.2 Power source

How is the energy – or power – to be provided to electronics? Does it have a part number,

and/or specification? What are its characteristics, such as its voltage range, and capacity? Is

there an impedance to the power source?

Does the battery have an impedance or other notable characteristics? Include an equivalent

circuit model where possible.

Is the electronics (and/or software) to monitor or condition the power source in any way?

Figure 20: Power

distribution diagram

Table 23: The

electronic design

elements

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 35

Are there start-up or operating requirements? Such as not exceeding transition power while

starting up (to prevent brown-outs)?

Are there safety or other quality requirements in using the power source?

15.1.3 Power decoupling capacitors

To accommodate this high internal resistance, a Vcc bypass capacitor is used. This capacitor

will act as the primary source of power during these periods. A 10pF bypass capacitor is used

as well, to shunt the RF & other energy picked up by the battery and traces.

[etc]

15.1.4 Reverse battery and other protections

Is there a fuse?

Are there protections against reverse battery connection? voltage applied to connector

signals? “load dump” protection?

15.1.5 Power regulators

Boost, buck, buck-boost, LDOs.

Are there start-up or operating requirements? Such as not exceeding transition power while

starting up (to prevent brown-outs)?

Is there is a low power setting? Is there safety requirements around the power regulators? Is

there a power tree? What is the topology? Are there rules to enabling and cutting off (or

disabling) power?

Are there special limits / configurations for the regulators? For instance, buck and boost

regulators often emit unacceptably unless configured to constraint their frequency emissions.

With variable or controlled power supplies, describe how they will be set and/or controlled.

Provide closed form equations to map the target voltage (or power) to the settings.

15.1.6 Measurement

Measures

Energy store, supply

 - state of charge

 - voltage

 - impedance

Power regulator

 - voltage measurement

 * brown out detect

 - current measurement

Loads

 - current esp at key points

 - voltage measure, e.g. to measure impedance

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 36

15.2. SENSORS AND OTHER INPUTS

Summarize the signal lines and sensors into the system:

 Signal one

 Six signals of another

 Power source measurement

 Power regulator measurement

 Temperature measurement

 etc

15.2.1 Layout

Layout can impact the quality of ADC measurements. Make note of the trace placement

requirements, ground plane requirements, placement of filter capacitors, etc.

15.2.2 Signal conditioning for ADC inputs

This section describes the signaling conditioning used to prepare signals for microcontroller

ADC inputs. This section should identify ratios, pre-conditions, and other information to

support section 15.4.7. The following signal conditioning circuit to prepare the signal for the

microcontroller ADC inputs:

R1

R2

VoutVin

C

The divider reduces the voltage input range to one that can be measured by the

microcontroller’s ADC inputs. The equation for the Vin to Vout is

21

2

RR

R
VV inout

The equation for the time constant, in the resistive-divider filter topology, is:

21

21

RR

RR
Cdivider

Note: if using an impedance divider – such as a capacitive divider – describe very carefully

how to use, time the measurements, and calibrate it.

Summarize the characteristic parameters of the conditioning and filter. Resistive-divider

filters have the following characteristic parameters:

Parameter Value

Divider ratio (nominal) 6.63 : 1

Output impedance low (<500Ω)

Time constant (τdivider) 1.35 • 10-6

Figure 21: Resistive-

divider

Equation 1: The

voltage ratio for a

resistive-divider

Equation 2: The time

constant for the

resistive-divider filter

Table 24: Resistive-

divider characteristic

parameters

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 37

Does the setting settling time require software consideration? Is the settling time compatible

or in conflict with ADC signal oversampling techniques? The ADC inputs are discussed in a

later section.

15.2.3 Power source measurement

Is the power source measured? Cross-checked?

Describe what supply voltages are measured, the expected & acceptable ranges, tolerances

and the voltage cross checks.

Describe the signal change from the power source to ADC (or other) input.

15.2.4 Power regulator measurement

Are the power regulator voltages measured? Many microcontrollers include a feature to

measure its supply, using internal precision voltage source. By measuring this and the

regulator supply voltage, [TBD] a crosschecks the ADC reference voltage.

Describe what supply voltages are measured, the expected & acceptable ranges, tolerances

and the voltage cross checks.

Describe the signal change from the power source to ADC (or other) input.

15.2.5 Temperature measure

Many microcontrollers and sensors include a feature to measure its internal temperature.

This can be tested by having the device firmware report the temperature and comparing

against a temperature probe on the manufacturing line. It has a per unit calibration value.

15.3. OUTPUTS AND CONTROLS

TODO describe the outputs,

TODO describe what it is controlling. Describe how they will be set and/or controlled.

Provide closed form equations to map the target (or power) to the settings to apply. If a

dynamical system of equations is needed, provide that.

For example:

 Is it driving a motor?

 Output relays?

 “Smart” FETs?

15.3.1 Relay

[describe]

15.3.2 H-bridge driven outputs

[describe]

15.3.3 Smart FET driven outputs

[describe]

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 38

15.4. MICROCONTROLLER & SOC/SIP

Introduce the microcontroller or SOC/SIP module here. Who is the manufacturer, and what is

model identifier?

 [Provide a diagram of the microcontroller boiler plate]

The microcontroller is responsible for [describe]. The section describes the microcontroller

support, and its several special features:

 The digital power supplies

 The analog power supplies

 The microcontroller’s clock(s) and clock failure detect

 Analog to Digital Converters

 Digital Inputs & Outputs

 Digital to Analog Converters

 SPI interfaces

 I2C interfaces

 UART

 Debugging interfaces

 The microcontroller’s pin map, organized by function grouping

15.4.1 The Digital Power supplies

The power supplies for the microcontroller core, the GPIO in/output pins, and battery backed

up region are supplied by the [TBD] regulator (see section {xlink}). Several microcontrollers

allow a separate power supply to the core (which often may run at a lower voltage and power

consumption) from the GPIO outputs (which may supply a higher voltage, and often has

higher current demands).

[diagram]

[diagram]

The smaller (bypass) capacitors should be located as close to the microcontroller pins as

possible; the supply capacitors should be located close to those capacitors. These serve as

noise suppression capacitors, taking off any noise picked up by the trace to the regulator.

Effectively the trace is an inductor and, with this capacitor, it forms a low pass filter.

15.4.2 The Analog Power supplies

The power supplies for the microcontrollers analog to digital converter, comparator, and other

analog domains are supplied by the TBD regulator (see section {xlink}).

[diagram]

Analog power supply can impact the quality of ADC measurements. Make note of the power

regulator requirements, placement of filter capacitors, trace placement, separation of grounds,

etc.

Figure 22: The

microcontroller power,

and basic I/O

Figure 23: The power

supply for the

microcontroller core

and battery backed up

region

Figure 24: The power

supply for the

microcontroller digital

IO

Figure 25: The power

supply for the analog

to digital converter

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 39

Data sheets have recommended noise bypass, power filtering, etc.

15.4.3 Operating modes

Are there notable operating modes of the microcontroller / module? Describe them

15.4.4 Microcontroller startup

Describe anything special: Boot pins, external program load (it isn’t intended to describe our

design of software.. only how the received microcontroller or module starts up)

15.4.5 Clocks

How many clocks/oscillators support the microcontroller? What is the accuracy of the

oscillator (± TBD ppm)?

Are there mechanism that detects failures with the high-speed clock? Describe them, and

where to find more information. What happens if a failure is detected?

15.4.6 EEPROM Interface

Are there connections to EEPROM or other external non-volatile storage?

15.4.7 ADC: Analog (Linear) to Digital Converters

This section provides key information to configure the ADC (and software that uses it) based

on the electronic design. Find the impedance of the input (for the signal chain), the number of

converter bits, the ADC impedance, and compute:

 The minimum sample time

 The max sample rate

 The tau roll off of a signal – how fast does the signal to the ADC respond to the

source input signal?

15.4.7.1 Minimum sample time

The settling time get enough of the signal from the source into the last bit of the ADC.

RAIN

ADC InputSource

CADC

RADC

Converter

The ADC actions that [intro]

1. An ADC typically closes the switch in the above diagram, allows the sample capacitor

discharge/charge so that its voltage matches the ADC input voltage. This duration is

the ADC sampling time (also called acquisition time).

2. The switch is opened, and the converter maps the voltage to a digital value. This

duration is the hold time (also called settling time).

3. The sum of these two durations is the conversion time (or latency).

The ADC sampling time should be set to a time greater than the RC time constant of the

above circuit scaled by the number bits to resolve. A typical ADC can be configured for 6 to

Figure 26: Equivalent

RC circuit for ADC

input

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 40

12 bits of resolution per sample. With a 12 bit ADC, a sampling time of 8.32 tau or greater3

should be used. The minimum sampling time as a function of the time constant and ADC

resolution is:

2lnnbitstimesampling ADC

The time constant, once the switch in the above diagram is close, is:

 ADCADCAINADC CRR

With a successive approximation (SAR) ADC, the ADC acquisition time is an integer power

of two number of ADC clock cycles:

cyclesnbitstimesettling 1

15.4.7.2 Max Sample Rate and Oversampling

The capacitor and impedance of the divider and filter (if any) may limit how frequently the

input may be sampled. The max source frequency4 for an ADC is:

divider

ADC

f

timesettlingnbits
f

1
)max(

2ln

1
)max(

The ADC may also be employed in an “over sampling” manner. The time between samples

must be much less than the rate at which the input signal changes. Oversampling works by

measuring the same true signal, plus a small amount of noise. The noise should evenly

distribute (on successive samples) the lower ADC bits above and below the true value. By

averaging the result, an extra bit of resolution can be obtained.

The output of the sampling and filtering (if any) should be examined on a time scale longer

than the settling time from the input to the end of the signal chain. The chain “slows” the

signal progression.

15.4.7.3 Calibration and Other issues

Determine if the following are of a concern and/or should be applied:

 ADC offset

 ADC gain

 ADC linearity

 ADC reference calibration

Is ADC characterization/calibration/compensation needed? These are typically not of concern

with simple inputs, such as switches. If needed, how will these be accomplished? Where &

when the steps be performed?

15.4.7.4 Self-Test and Hardware Test

The external ADC reference can be checked periodically. This can be done by measuring the

external reference against the internal reference.

3 For instance, ST micro often recommends 10 tau for time varying signals
4 Again, ST micro recommends using 1/(10 tau)

Equation 3: The ADC

sampling time

Equation 4: The time

constant for the ADC

input

Equation 5: The ADC

conversion time

Equation 6: The

ADC’s max input

frequency

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 41

The ADC – and signal chain – can be tested by injecting a step signal and checking signal

propagation for response:

1. Connect probe to input test points

2. Connect probe to output test points

3. Route to ADC input to DAC in software

4. Inject step pulse into the input

5. Watch the input test points, output test points and the DAC output for the step

response.

15.4.8 Digital Inputs and Outputs

Pins that are stuck high or stuck low can be performed by having software individually drive

each pin high and low, and checking that the associated test point is driven properly. The

microcontroller should not reset during this test.

To check for shorted pins, during the test above have all pins other than the one under test is

configured as an input. Then before and after the pin test, check that no other pins are change

state, or are in an invalid state as result of the pin-under-test changing state.

15.4.9 SPI

Are the SPI features of the microcontroller employed? What is it used to communicate with?

This includes a clock, data to peripheral, data to master, and chip select. The SPI continuity

can be tested as follows:

 The SPI pins should be tested as digital input/output pins first. (The microcontroller

supports this.).

 The software can directed to perform a long SPI action, with a characteristic MOSI

data pattern. The SPI clock and data output line can examined with an external lab

tool to check that the edge rise, number of edges, and timing is as expected. It is

recommended that the Chip select to the slave peripheral not be employed with the

SPI at this time. This checks that the SPI output matches expected patterns and is

likely to be interpreted as intended by the slave peripheral.

 The Chip select, is a GPIO line and is tested per the digital in/out tests earlier.

15.4.10 UART Interface

Is there a UART communication interface? Describe it. Does it have handshaking? Is it bi-

directional?

Port Pin Label Description

 UART_TX Out UART from microcontroller

 USART_RX In UART to controller

15.4.11 Debugging interface

[describe]

Table 25: UART pin

map

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 42

Port Pin Label Description

GPIOA 13 SWDIO io Single wire debug IO

GPIOA 14 SWDCLK in Single wire debug clock

15.5. COMMUNICATION AND RADIATORS

What is the connectivity to the external world? UART, SPI, Bluetooth LE, etc?

Are there transmitters? Are there “wireless” energy transfers? Does the module have other

radiations?

15.6. NON-VOLATILE STORAGE

DATA STORAGE. The module/microcontroller/etc includes a non-volatile storage (Flash) to

hold data and the program. The microcontroller executes the program directly from the flash.

If there are protections available to prevent the areas of flash used for the program from being

erased or written, describe them. The program area can also be regularly checked to detect

unintended alteration, and loss of integrity from the flash media. Describe these.

The non-volatile storage can tested:

 Check that the storage area is able to hold the range of values. That is, each bit in the

storage area can clear and set, that setting or clearing a bit does not clear or set other

bits in the storage area. (This is a test that the storage area works as intended, not that

the access is done on a bit level.)

 Check that the storage area is non-volatile – that it retains the intended values after

power has been removed from the system. This is done by setting the values in non-

volatile area to non-default values, removing power (for a time longer than it takes

internal power caps to deplete), then applying power, and checking that the storage

area holds the expected values.

There is, at present, no means to verify the integrity of RAM against corruption such as from

single event upset. Working data held in RAM, including some critical values, is sensitive to

such faults. Will the product be expected to operate continuously for years?

The software may employ checks on critical data to mitigate this concern. Describes these

checks.

FIRMWARE STORAGE. The program memory is integrated into the microcontroller. Is the

OEM testing sufficient or not sufficient? Do not jolly anyone along; doing so will eventually

cause the project to fail. Describe the manufacturing tests here, including burn-in. Describe

any integrity checks.

How many erase cycles is the non-volatile memory rated for? How often will the non-

volatile memory be modified? What is the life span of the product?

15.7. TEMPERATURE OPERATING RANGE

The electrical design will operate over a temperature range sufficient to support design

verification, manufacturing operations, and manufacturing test. State what these are. Will

“industrial” rated parts be required? Do the temperature limits support the product spec?

Table 26: Single wire

debug pin map

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 43

15.8. EMI CONSIDERATIONS

Are the buck/boost regulators configured specifically? Are there IO pins to be held to a

ground (or other) state? Chokes? Layout considerations? Cabling requirements?

15.9. BOARD LAYOUT

Are there elements to be aware in board layout? For example:

 RF antenna

 Crystal oscillators and parasitic capacitance

 High cycle current flow, around buck/boost voltage converters and current

measurement devices

 High current flow, such as in recharge

16. POWER CHARACTERISTICS

Power usage / rating / characteristics are TBD.

How much is the power consumption.. at start-up? running? sleep?

Is there low power requirements?

16.1. TUNING SOFTWARE ACTIVITIES FOR LOW POWER

[describe]

What are the controls?

16.2. CONFIGURING THE MODULE FOR LOW POWER

[describe]

Which GPIOs should be set high? Low?

Which GPIOs should be inputs? Which should be turned into analog inputs?

What clocks should be turned off? Which should be left on?

etc.

16.3. TESTING THE POWER STATE OF THE MODULE

[describe]

It is possible to tell when the module is in a particular mode, such ass in run mode or deep

sleep mode? Describe how to do so

17. TRIM & CALIBRATION

Calibration:

 Is the device calibrated per design? Is it calibrated per unit?

 How will the unit be trimmed/calibrated?

 Does the device self-calibrate?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 44

Describe the calibrations that must be performed and how that is supported.

18. THE SAFETY & INTEGRITY MODEL

Describe how the electronics, microcontroller and its firmware control approach safety.

18.1. FEATURES THAT ARE CONTROLLED BY THE OPERATOR

Describe the features that are controlled by the operator and how they interact with these

layers

18.2. FEATURES THAT MEASURE THE CURRENT STATE TO ENSURE THAT WE ARE
WITHIN THE SAFE OPERATING REGION.

Describe the features that ensure the system is within a safe operating region. How is the

current state measured? For instance, a typical microcontroller includes several features that

may be relevant:

 Input voltage monitoring

 Power supervisor / brown-out detect function

 Communication with subsystems

18.3. SECONDARY CONTROLS

18.3.1 Power supervisor, brown-out detect

Does the microcontroller include an internal brownout detect? Describe it.

18.4. FEATURES THAT PREVENT PROBLEMS

Does the design include features that prevent problems? Some special microcontroller might

include:

 PWM break function

 Peripheral lock bits

18.4.1 PWM Break function

Some microcontrollers – usually those targeting motor controlled – have an a signal input that

disables the PWM. For instance, an “emergency stop” (ESTOP) signal may be connected to

this input (and other mechanisms), to stop the impelling a motor, even if the software has

malfunctioned.

18.4.2 Peripheral locks

Several microcontrollers include a feature that “locks” the peripheral registers from further

change. Is this feature present? Describe it and its potential use. Typically the registers are

read/write until lock activation. Once the lock bits have been set, the protected registers –

including the lock bits – are read‑only until the microcontroller is reset, or a special unlock

sequence is used. What registers are protected – the lock bits themselves (if not, indicate

this)? the PWM configuration? GPIO configuration?

microcontroller power

supervision

PWM break input

peripheral lock bits

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 45

18.5. FEATURES THAT CHECK THE INTEGRITY

This is the section to describe special features of the microcontroller that support checking the

integrity of the microcontroller, the program, and it’s execution. For instance:

 SRAM parity check

 Clock failure detection

 Watchdog timers

 CRC peripheral for fast storage and communication integrity checking.

18.5.1 SRAM parity checks

Does the microcontroller include SRAM self-check features, such as parity checking? If so

describe it’s configuration, and use for safety and system integrity.

18.5.2 Clock failure detection

Does the microcontroller include mechanisms to detect clock failure? For instance, many

STM32 microcontrollers include a feature called clock security system: In the event that the

external crystal oscillator and the internal oscillator have a significant mismatch, the

microcontroller will enter into an NMI fault state.

does the microcontroller include other separate or independent clock?. These can also be used

to cross-check the main oscillator.

19. PIN MAPS

Summarize the connectors to the module/sub-system.

 Connector 1

 Connector 2

 …

 Manufacturing test connector

 Programming connector

19.1. CONNECTOR 1

Pin Label Description

SRAM parity check

Clock failure detection

Table 27: XYZ

connector

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 46

19.2. ARM CORTEX DEBUG, ETM AND PROGRAMMING

The table below describes typical JTAG/Single-Wire Debug programming connector for

ARM Cortex processors:

Pin# Pin Name Label Description

 TCK/SWCLK Debug-interface Serial Wire clock input and JTAG Test Clock

 TMS/SWDIO Debug-interface Serial Wire data input / output and JTAG Test Mode
Select.

 TDO/SWO Debug-interface Serial Wire viewer Output.

 TDI Debug-interface JTAG Test Data In

 RESET Resets the microcontroller

 VDD Power

 GND Ground reference

20. ELECTRONICS DESIGN ANALYSIS

Take the schematic and electronics design description and analyze these to:

 Identify the interfaces and inputs/outputs

 Identify the required delays between steps

 The max time between steps

 Design identifies more specific actions that can be taken

 The function role & groups: UART, I2C, SPI, PWM, ADC, DAC, memory interface,

etc.

 Equations, system model

 Catalog of functions: role of the signals, parameters to gather

 Pin maps of programmable elements (microcontroller / FPGAs, etc). Sort by function

Biasing. The speed / rate, and other parameters

 Pin maps to function

 Pin Biasing

 Speed / rate and other parameters

 Catalog of function: roles of signals, parameters to gather

 Identify time delays, max sampling rate, max sampling time, max time between steps

 Map hardware to function and signals. Design identifiers more specific actions that

can be taken.

 Connector: ESD, reverse polarity, overvoltage; connector name, pin names; internal

node names

20.1. SCHEMATIC REVIEW

Reviewing the schematic should look to identify:

 Are the related components of a sub-circuit located together?

 Is the flow following convention?

Table 28:

Programming pin map

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 47

 Is the signal arrow following the nominal direction of signal flow?

 Does the design address the requirements?

 Are there requirement that the electronic design should address… but does not?

 Are there elements of the electronic design not adequately covered by the

requirements? Should requirements be written to clarify commitments & testable

behaviour?

 Are there missing requirements? Specifically, are there product standards

requirements that are missing?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 48

CHAPTER 6

Software Realization

This chapter describes how to convert a body of requirements (in conjunction with a hardware

design description) into a software implementation

 Overview

 Initialization of the board and configuring the microcontroller function

 Declaring the variables – event flags and timers – needed for the requirements

 Signal processing – filters, PID control

 Implementing the requirements

21. OVERVIEW

The implementation approach includes support of testing:

 Testing against the requirements

 Testing the software

 Testing which elements of the requirements have been invoked.

 The steps of execution

 Special realizations

21.1. STEPS IN [TBD]

Steps in [TBD]

1. Initialize hardware. The in/outs, the pull-ups, the assignment to alternate function

2. Configuration tables of the hardware; connect hardware/framework function to pins

/other

3. Configuration of the signal processing

4. Define event flags as conditions for the requirements. Define timers for conditions

22. BOARD CONFIGURATION / INITIALIZATION

Take from schematic pin map

Configure tables, # defines

Configure clocks

Configure peripheral rates

[more description]

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 49

23. PARAMETERIZED SIGNAL PROCESSING

This section discusses [intro]

 IIR Filters

 PID controls

 Hysteresis: conversion to digital

 Clamps / min / max

 Classification Tables

 Events

23.1. IIR FILTERS

Infinite-impulse response filters (IIRs) are an easy to implement form of filters – and usually

take less CPU power than other realization methods. There is stock of techniques to convert

filter specifications into an IIR implementation. The IIR filter can implement any filter

specified as a transfer function in the form:

2

2

1

1

2

2

1

10

1
][

zaza

zbzbb
zH

The 5 coefficients for 2nd order IIR filters are called a0, a1, a2, b1, and b2. The code below

summarizes the kernel of the filter computation:

]2[]1[

]2[]1[][
][

21

210

noutanouta

ninbninbninb
nout

At most, the software need retain only the last 2 input values and the last 2 output values.

23.1.1 Converting filters to IIR filters

There are recipes to implement an IIR filter for each of the parameterized filter specifications.

The filter type and its parameters (parameterized specification) identified during the analysis

phase.

The 12 kinds of filter specifications given in chapter 3 can be converted into IIR coefficients

for the transfer function given above. “Each of these is designed to optimize a different

performance parameter. The complexity of each filter can be adjusted by selecting the

number of poles and zeros,”

Filter Description

Bessel Preserves the shape of the waveform. “The Bessel filter has

no ripple in the passband, but the rolloff is far worse than the

Butterworth.”

Butterworth “Optimized to provide the sharpest rolloff possible without

allowing ripple in the passband. It is commonly called the

maximally flat filter, and is identical to a Chebyshev designed

for zero passband ripple.”

Chebyshev Fast roll-off (drop in amplitude), changes waveform shape.

Bad for anti-alias filters. Good for removing separate

frequencies.

Equation 7: Filter

transfer function

Equation 8: Recursive

filter evaluation

Table 29: Filter design

types

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 50

Elliptic “Allows ripple in both the passband and the stopband.

Although harder to design, elliptic filters can achieve an even

better tradeoff between roll-off and passband ripple.”

It is recommended to limit IIR filters to 2nd order bi-quad filters. Filters with higher orders

are rare in practice, and better accomplished by cascading bi-quads. “High-order IIR filters

can be highly sensitive to quantization of their coefficients, and can easily become unstable.”

23.1.2 Special filters and how to specify them

Below is a synopsis of the how to form common filters that would be used in this application.

Note: The conversion to coefficients takes into account the sampling rate.

DC REMOVAL FILTER has

b0=1, b1=-1, b2=0, a1=0 .. -0.95, a2=0

EXPONENTIAL SMOOTHING has coefficients of the form:

Fsamplee

a

b

b

/1

1

1

0

1

0

{all other coefficients are zero}

The process to form the coefficients for other filters based on their the type and kind of filter

can be found in Smith (1997) and Redmon (2011)

23.2. PROPORTIONAL-INTEGRAL-DERIVATIVE (PID) LOOPS

Proportional-Integral-Derivative control loops are used when the reference signals imposed on

the system are ramps or time-functions. A PID specification is given with the following

parameters:

Parameter Description

KD The coefficient of the derivative term. By setting the Kd coefficient to

zero get a PI. A PI control is used when the reference signals imposed

on the system are steps or set-points.

KI The coefficient of the integral term

KP The coefficient of the proportional term

Out max The maximum output value. The output and integral are kept ≤ to this

value. This keeps the integral term from winding up.

Out min The minimum output value. The output and integral are kept ≥ to this

value. This keeps the integral term from winding up.

The PID specification can be converted to a form that uses the IIR module. This form has

advantages over the conventional “naïve” implementation, including it is less glitchy.

Smith 1997

Equation 9: DC

removal filter

Equation 10:

Exponential smoothing

filter construction

Table 30: PID

parameters

Equation 11: Mapping

PID coefficients to IIR

formulation

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 51

0

1

2

2

1

2

2
1

1

2
1

0

a

a

t

K
b

t

K
tKKb

t

K
tKKb

d

d

ip

d

ip

Notes:

 Normalize the input/set point to 0..1 or -1..1

 Clamp the history value to prevent windup

23.2.1 Testing

The filter (and ADC and signal chain) can be tested by injecting a signal and checking the

output:

6. Connect probe to input test points

7. Connect probe to output test points

8. Route an ADC input to the filter input in software

9. Route to filter output to DAC in software

10. Inject step pulse into the input

11. Watch the input test points, output test points and the DAC output for the step

response.

23.3. HYSTERSIS

[control bands] [also, support the thresholds varying based upon operating conditions]

[describe]

23.4. CLASSIFICATION TABLES

This section describes the implementation of classification tables in software. Such a table

maps input conditions to an output state:

Condition Outcome

Name of output,

state variable

Name of inputs,

state variables

Nominal value /

name

Extra / diagnostic

info

Value, or

value set

The rows should not compete or conflict. (This is something that should have been looked for

in the analysis phase).

I will look at two different ways of converting this decision table to code:

1. A simple, naïve if-then-else approach

2. An approach that maps the table to data structures, with the potential to reuse code

Figure 27: Property

lookup table

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 52

23.4.1 Mapping a decision table to if-then-else (approach #1)

The approach is three parts:

1. Each row maps to “if-then” structures

2. Between each row is an “else”

3. The last row is the default value

The template for the table is:

outcome

if ()

{

}

else if ()

{

}

…

else

{

}

property comparisons
Row 1

outcome

property comparisons
Row 2

Default value
outcome

The template for a single row is:

Extra diagnostic info

Boolean expression on

property values

if ()

{

}

property comparisons

Set the outcome variableoutcome = value;

Log or track the outcome

The column names can be event flags, or property names. This may include referring to

property values at the previous time step. The process to create property comparisons is::

1. Skip the column if the variable is marked “do not care” (or any or blank)

2. If specific value or state comparison

3. If marked as becoming a specific value or state (i.e., was not in the previous time step)

4. All of the comparisons will be joined with an “&&”

The property comparison can be composed of current values, previous time step values… and

event flags. A boolean of expression comparing composed f the following:

 Current property values (being compared against other property values or threshold)

 Property values at a previous time step

 Event flags (being evaluated as true, not true, or the same as other event flags)

23.4.2 Mapping a decision table to data structures (approach #2)

Mapping a decision table to data structures is a slightly more complex approach. [Is there any

advantage? Can it do everything? I’m increasingly skeptical] One advantage is that it can be

reprogrammable without requiring recompiling the firmware.

This form of classification table maps to the structures here:

 The table maps to a table structure.

Figure 28: How a

decision table can be

implemented

Figure 29: How a

decision table row can

be implemented

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 53

 Each row maps to a row structure. The rows are stored as an array, referenced by the

table structure.

 The cells in the row map to a pattern structure.

The software employs the following pattern to represent a classification tables:

static pattern const table1_row1_cond[] =
{
 …
};

Condition

Rows

Tables

static row const table1[] =
{
 row(table1_row1_cond, subject, state, reqId)
 ,...
};

table const tables[] =
{
 table1
 ,...
};
uint32_t const numTables=_AryCount(tables);

The process to convert the classification table into code is:

1. Create an array of row structures for the table (see the middle of the figure

above).

2. Start with the first row. Create a pattern array of structures, as show above.

Create a list of the conditions for that row. There is usually only one pattern

entry for the conditions.

3. Add a reference to condition and output value to the table array of table rows

4. Repeat for the remaining rows

5. Add the table to the array of tables, SMap_tables[]

23.5. EVENTS

The trigger for an action is an event flag. [Todo naming convention for events]. An event

flag is set if one of the following occurs:

 The hardware has signaled that an event has occurred.

 Properties match a value range or pattern

 Counts of events are within a range

 Message, or other external event has been received

 Timer expiration

EVENT FLAGS are variables that correspond to an event. This may be a timer expiring, an

activity starting or completing, or observance of an external event – such as button press, or a

value outside of operating limits.

The use of event flags may also serve in “white box” testing. The flag can be observed in the

debuggers “live watch” window. The “live watch” can also inject the signal, to test the

correct behaviour of triggered actions.

Figure 30: Overview

of the code for the

classification table

event flags

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 54

The template for detecting a property-value based event:

Or start timer

Boolean expression

on property valuesif ()

{

 Evt_flag = 1;

}

property comparison

Start a timer for the

delay between trigger

and starting the

action

Set a flag to indicate

the event… or

The property comparison: current values, previous time step values… and event flags. A

boolean of expression comparing composed of the following:

 Current property values (being compared against other property values or threshold)

 Property values at a previous time step

 Event flags (being evaluated as true, not true, or the same as other event flags)

23.5.1 Signal state and signal transition

The clauses that are predicated on the state of an input signal can be translated to source code

as:

 (stateNow -> debouncedInputs & (mask of input signals)) == mask of states if each
input signal

The clauses that are predicated on the state transition of an input signal to a target state can be

translated to source code as:

 ((stateNow -> debouncedInputs & (mask of input signal)) == mask of target state)
&& ((statePrev -> debouncedInputs & (mask of input signal)) != mask of target state)

23.5.2 Timers and event flags

By convention the name of event flags is predictable from the timer name. Where the timer is

prefixed “Tmr_” followed by name, the event flag is “Evt_” prefix followed by the name.

Tmr_
Name

Timer variable

Evt_Event flag

24. REALIZING REQUIREMENTS

intro

 Actions

 Triggers

 Wrap up, review of the software design & requirements

Figure 31: Typical

check of property values

to indicate event

signal state clauses

signal transition

clauses

Figure 32: Timer and

event flag naming

convention

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 55

24.1. ACTIONS

The template for the flag triggering the start of the action:

Detect that action is

triggered

If starting the action

is a trigger for a

timer of subsequent

action, set the flags

or start the timers

Start action
Carry out the action

if (Evt_flag)

{

 Evt_flag = 0;

}

Set flags /

Start timers

pre-conditions – usually at the previous time step

24.2. OTHER PROPERTIES

Counting events / actions / etc

24.3. SOFWARE REVIEW

Reviewing the software should look to identify:

 Does the design address the requirements?

 Are there requirement that the software design should address… but does not?

 Are there elements of the software design not adequately covered by the

requirements? Should requirements be written to clarify commitments & testable

behaviour?

Figure 33: Typical

check to initiate the

action

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 56

[This page is intentionally left blank for purposes of double-sided printing]

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 57

Appendices

This part provides supplemental material:

 ABBREVIATIONS, ACRONYMS, & GLOSSARY. This appendix provides a gloss of terms,

abbreviations, and acronyms not defined in the other appendices.

 COMMON NOUNS. This appendix lists common nouns, including peripherals and sensors

 COMMON PROPERTIES. This appendix lists scientific units/dimensions.

 COMMON CATEGORICALS. This appendix lists the common categoricals.

 COMMON COMPARISON. This appendix lists the common comparables, comparatives,

superlatives

 COMMON, WELL-KNOWN EVENTS. This appendix lists the common well-known events

 REQUIREMENTS MAP. This appendix maps each requirement to design elements that

address it

 CODE COMPLETE SPECIFICATION REVIEW CHECKLISTS. This appendix reproduces

checklists from Code Complete, 2nd Ed that are relevant to specification reviews.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 58

[This page is intentionally left blank for purposes of double-sided printing]

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 59

APPENDIX A

Abbreviations,

Acronyms, Glossary

Abbreviation /
Acronym

Phrase

ADC analog to digital converter

AIn analog input

ANSI American National Standards Institute

Calc calibrate
calibration

Conv convert
conversion

CRC cyclic redundancy check

DIn digital input

DIO digital input/output

DOut digital output

EEPROM electrical-erasable programmable read-only memory

ESD electro-static discharge

GPIO general purpose IO

Hdw hardware

JTAG Joint Test Action Group

OPC operator presence control

Pwr power

Recv receive

RPM rotations per minute

SAR successive-approximation converter (a type of ADC)

SDK software development kit

Snd send

STM32 A microcontroller family from ST Microelectronics

Sys system

SWD single wire debug

Table 31: Common

acronyms and

abbreviations

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 60

Tst test

Tim time

UART universal asynchronous receiver/transmitter

Phrase Description

abnormal condition A condition when an operating variable has a value outside of its normal operating
limits.5 See also fault, normal operating condition.

acquisition time see sampling time.

application logic Application logic is a set of rules (implemented in software, or hardware) that are
specific to the product.

black-box testing Testing technique focusing on testing functional requirements (and other

specifications) with no examination of the internal structure or workings of the
item.

break function The break function protects the power FETs driven by the PWM; when a break
signal is received, the PWM outputs are disabled.

capacitive divider

control function (class B) Those “intended to prevent an unsafe state of the appliance. Failure of the control

function will not lead directly to a hazardous situation” (EN 60730-1:2011 section

H.27.1.2.2)

conversion time The duration that it takes an ADC to sample and converter an input voltage into a
measurement. This is the sum of the sampling time and the hold time.

data integrity That the stored data – such as program memory – is intact, unchanged, in the

expected order and complete; that is, that the entire program memory area matches
exactly with the data defined for a particular revision.

data retention The ability for a storage to hold bits

debounce Switches and contacts tend to generated multiple rising & falling edges when
coming into contact; debouncing removes the extra signals.

defect A flaw in design or implementation esp. one that may lead to failure.

design document A design document explains the design of a product, with a justification how it
addresses safety and other concerns.

failure1 A failure “is a permanent interruption of a system’s ability to perform a required

function under specified operating conditions.” (Isermann & Ballé 1997).

failure2 An incident or event where the product does not perform functions (esp. critical

functions) within in specified limits.

fault A component not meeting its specifications.

fault tolerant “The capability of software to provide continued correct execution in the presence

of a defined set of microelectronic hardware and software faults.”[UL 1998]

flash A type of persistent (non-volatile) storage media.

high-level document System specification, customer inputs, marketing inputs, etc.

5 Modified from http://www.wartsila.com/encyclopedia/term/abnormal-condition

Table 32: Glossary of

common terms and

phrases

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 61

hold time The duration (after the sample capacitor has been charge) during which the voltage
is converted into a measurement value. also called settling time

impedance divider

integrity “The degree to which a system or component prevents unauthorized access to, or
modification of, computer programs or data.”[UL 1998]

initialization Places each of the software and microcontroller elements into a known state;

performed at startup.

integrity check Checks to see that a storage unit has retained its data contents properly and that the

contents have not changed unintentionally.

normal operating
condition

A condition when each of the operating variables (flow, pressure, temperature,

voltage, etc.) has a value within of its respective normal operating limits. See also
abnormal operating condition, fault.

oversampling

parity check A simple form of error detection. Each byte in SRAM has an extra check bit that
can catch memory errors.

power regulator

power source Where the electric energy comes from.

protective control A control whose “operation … is intended to prevent a hazardous situation during
abnormal operation of the equipment” [EN60730-1]

requirement Defines what an item must do.

resistive divider

sampling time The duration that an ADC connects its sample capacitor to an input and allows it

discharge/charge so that its voltage matches the input voltage. also called
acquisition time

settling time see hold time

single wire debug An electrical debugging interface for the ARM Cortex microcontrollers.

τADC The time constant of the analog converter sampling capacitor, its impedance and
the analog source impedance.

τDivider The time constant of resistive divider. This divider is often the input to an analog
to digital converter.

test report A document describing how a product performed under test.

white-box testing Testing technique focusing on testing functional requirements (and other

specifications), with an examination of the internal structure or workings of the
item.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 62

APPENDIX B

Common Nouns

This appendix lists the “well-known” common nouns. Note: these are distinguished from an

abstract noun

Abbreviation /
Acronym

Phrase

ADC analog to digital converter

Btn button

Ch channel

DAC digital to analog converter

DMA direct memory access

I2C inter-IC communication; a type of serial interface

IRQ Interrupt request

ISR Interrupt service routine

LED Light emitting diode

MCU microcontroller (unit)

Mem memory

MPU memory protection unit

NMI non-maskable interrupt

NVIC nested vector interrupt controller

PMAC permanent magnet AC motor

PWM pulse width modulator

RAM random access memory; aka data memory

SMBus system management bus

SRAM static RAM

TMR timer

UART universal asynchronous receiver/transmitter

WDT Watchdog timer

Table 33: Common

Noun acronyms and

abbreviations

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 63

Kind Kind of Description

analog to digital converter peripheral An analog to digital converter measures a voltage signal, producing

a digital value.

connector

cyclic redundancy check A form of error-detecting code. A check value is computed from a

block of data.

digital to analog converter A digital to analog converter is used create a voltage signal from an

internal value.

direct memory access peripheral A microcontroller peripheral that moves data to/from another

peripheral from/to data memory; this is useful to reduce work done

in software.

H-bridge An electronic circuit that allows a voltage to be applied to a load in

either direction.

Hall cell A type of sealed switch the closes in the presence of a magnet; this

is used to sense the position of the rotor.

microcontroller

non-maskable interrupt interrupt A type of microcontroller fault.

non-volatile memory storage A storage mechanism that will preserve information without power.

peripheral lock The microcontroller’s peripheral registers can be locked, preventing

modification until microcontroller reset.

single wire debug interface An electrical debugging interface for the ARM Cortex

microcontrollers.

switch

timer counter Increments (or decrements) regularly, setting a flag and (optionally)

raising an interrupt when it expires.

watchdog timer timer A hardware timer that automatically resets the microcontroller if the

software is unable to periodically service it.

Phenomena Sensor Electrical Output

Accelerometer Force balance

pendulum

Piezo-electric

Servo

Acoustic

Chemical CO Sensor Voltage, charge

 Ion Sensor Current

 pH Electrode Voltage

 Photodiode (turbidity, colorimeter) Current

 Solution Conductivity Resistance/current

Flow Hot-wire Anemometer Resistance

Magnetic Flow-meter Voltage

Table 34: Common

kinds

Table 35: Common

sensors

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 64

Mass Flow-meter Resistance, Voltage

Mechanical Transducer (turbine) Voltage

Ultrasound/Doppler Frequency

Fluid Level and Volume Capacitor Capacitance

Mechanical Transducer Resistance/Voltage

Switch on/off

Thermal Voltage

Ultrasound Time Delay

Force, Weight, Torque,
Pressure

Load Cell Resistance

Mechanical Transducer Resistance, Voltage, Capacitance

Piezoelectric Voltage, or charge

Humidity Capacitive Capacitance

Infrared Current

Ionic concentration pH Probes

 dissolved oxygen

Light Photodiode Current

Magnetic Hall Effect Voltage

Magneto-Resistive Resistance

Motion and Vibration Accelerometer Voltage

LVDT AC Voltage

Microphone Voltage

Piezoelectric Voltage or Charge

Ultrasonic Resistance, Voltage, Current

Position interferometer

 potentiometer

 LVDT

 RADAR & ultrasound

 rotory variable-reluctance differential
transform (RVDT)

 shaft encoder

 star tracker

Pressure force-displacement

 strain-gauge

Proximity Capacitance Voltage, Frequency

Inductance Current, Frequency

Resistance Voltage, Current

Radiation Geiger counter

Strain Piezo-electric voltage

 Piezo-resistive Resistance

Temperature bimetallic

IC Voltage

RTD Resistance

Thermocouple Voltage

Thermopile Voltage

Thermistor Resistance

Infrared Current

Touch Capacitance Voltage

 Inductance Current

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 65

 Resistance Frequency

Velocity Doppler effect transducers (radar,
ultrasonic)

Rate gyroscopes

Tachogenerators

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 66

APPENDIX C

Properties

Abbreviation /

Acronym

Phrase

AVG average

Hz Hertz; 1 cycle/second

Idx index

Len length

Num number

On on

Off off

Sec second(s)

Table 36: Common

acronyms and

abbreviations

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 67

Property Kind of Dimension Possible values

brightness number lumens

gender {male, female, neuter}

It is suggested (strongly) that the following units be employed and used consistently for their

dimension:

String Description

A Amps

°C Degrees Celsius

C Coulombs

Hz Frequency, or cycles/second

J Joules

V Volts or voltage

Table 37: Glossary of

common properties

Table 38: Common unit

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 68

APPENDIX D

Common Categorical

Values & States

This appendix describes common categoricals.

Phrase Description

female

male

on

off

Colors – such as red green, blue – are often treated as categoricals. Even if they can be

arranged as a structure of ordinal elements.

Table 39: Glossary of

common categoricals

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 69

APPENDIX E

Common Comparison

Integers and reals: ==, ≤, <, >, ≥

For floating point, the following transforms do not apply

A is not equivalent to

a == b b == a

a < b b > a

a ≤ b b ≥ a

a ≥ b b ≤ a

Both relative comparisons are false is either a or b is a NAN.

Adjective Property Comparison

brighter brightness >

Adjective Property Comparison Auxiliary

brighter brightness >

bright brightness > TBD

The comparison is grouped by the property dimension below:

dimension Adjective Property Comparison Auxiliary

length longer length >

 long length > TBD

duration longer duration >

 long duration > TBD

Table 40: Common

comparative

definitions

Table 41: Common

comparable definitions

Table 42: Comparable

definitions for an

instance

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 70

APPENDIX F

Common Events

This appendix describes common events, excluding those derived from an action beginning or

ending.

Abbreviation /
Acronym

Phrase

IRQ Interrupt request

POR Power on reset

Table 43: Common

acronyms and

abbreviations

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 71

Phrase Description

error An error is the occurrence of an incorrect (or undesired) result.

exception A special condition – often an error – that changes the normal control flow. On an

ARM Cortex, this can cause the processor to suspend the currently executing

instruction stream and execute a specific exception handler or interrupt service
routine.

fails An incident or event where the product does not perform functions (esp. critical
functions) within in specified limits.

fault1 A fault is an abnormal condition, or other unacceptable state of some subsystem

(or component) that will disallow operation. See also abnormal condition, normal
operating condition.

fault2 A fault is represented an interrupt or exception on ARM processors that pass
control to handler of such an abnormal condition.

hard fault A type of microcontroller fault.

power off When energy is no longer (or is to no longer be) applied to the system or
subsystem.

power on when energy is to be applied to the system or subsystem

power on reset A type of microcontroller reset that occurs when power is applied to the
microcontroller; release from reset allows software to execute.

single event upset An ionizing particle flipped a bit or transistor state

start up

system tick The (regular) expiration of a key “system” timer.

watchdog reset A microcontroller reset triggered by the expiration of a watchdog timer.

Table 44: Glossary of

common events

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 72

APPENDIX G

Code Complete

Specification Review

Checklists

Source: https://github.com/janosgyerik/software-construction-notes/tree/master/checklists-all

25. CHECKLIST: REQUIREMENTS

25.1. SPECIFIC FUNCTIONAL REQUIREMENTS

 Are all the inputs to the system specified, including their source, accuracy, range of values, and

frequency?

 Are all the outputs from the system specified, including their destination, accuracy, range of values,

frequency, and format?

 Are all output formats specified for web pages, reports, and so on?

 Are all the external hardware and software interfaces specified?

 Are all the external communication interfaces specified, including handshaking, error-checking, and

communication protocols?

 Are all the tasks the user wants to perform specified?

 Is the data used in each task and the data resulting from each task specified?

25.2. SPECIFIC NON-FUNCTIONAL (QUALITY) REQUIREMENTS

 Is the expected response time, from the user's point of view, specified for all necessary operations?

 Are other timing considerations specified, such as processing time, data-transfer rate, and system

throughput?

Adapted from

S T E V E N C .

M C C O N N E L L ,

C O D E C O M P L E T E ,

2 N D E D .

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is

Copyright (c) 1993-2004 Steven C. McConnell. Permission is hereby given to copy, adapt, and distribute

this material as long as this notice is included on all such materials and the materials are not sold,

licensed, or otherwise distributed for commercial gain.

This material is copied and/or adapted from the Code Complete 2 Website at cc2e.com. This material is Copyright (c) 1993-2004 Steven C. McConnell.

Permission is hereby given to copy, adapt, and distribute this material as long as this notice is included on all such materials and the materials are not
sold, licensed, or otherwise distributed for commercial gain.

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 73

 Is the level of security specified?

 Is the reliability specified, including the consequences of software failure, the vital information that

needs to be protected from failure, and the strategy for error detection and recovery?

 Is maximum memory specified?

 Is the maximum storage specified?

 Is the maintainability of the system specified, including its ability to adapt to changes in specific

functionality, changes in the operating environment, and changes in its interfaces with other software?

 Is the definition of success included? Of failure?

25.3. REQUIREMENTS QUALITY

 Are the requirements written in the user's language? Do the users think so?

 Does each requirement avoid conflicts with other requirements?

 Are acceptable trade-offs between competing attributes specified—for example, between robustness

and correctness?

 Do the requirements avoid specifying the design?

 Are the requirements at a fairly consistent level of detail? Should any requirement be specified in

more detail? Should any requirement be specified in less detail?

 Are the requirements clear enough to be turned over to an independent group for construction and still

be understood?

 Is each item relevant to the problem and its solution? Can each item be traced to its origin in the

problem environment?

 Is each requirement testable? Will it be possible for independent testing to determine whether each

requirement has been satisfied?

 Are all possible changes to the requirements specified, including the likelihood of each change?

25.4. REQUIREMENTS COMPLETENESS

 Where information isn't available before development begins, are the areas of incompleteness

specified?

 Are the requirements complete in the sense that if the product satisfies every requirement, it will be

acceptable?

 Are you comfortable with all the requirements? Have you eliminated requirements that are impossible

to implement and included just to appease your customer or your boss?

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 74

A

activity · 10, 53
analog

ADC · 36, 37, 38, 39, 40, 41, 46, 51, 59, 60, 61,
62, 63

input · 43, 59
output

DAC · 41, 46, 51, 62
application logic · 60

B

battery · 34, 35, 38
charge · 35, 39, 61, 63, 64
discharge · 39, 59, 61
voltage · 34

Bluetooth LE
peripheral · 41, 44, 45, 48, 63
product id · 3

C

characteristic
notification & indication · 29, 30, 36, 41, 44, 54

characterization · 40
clock · 30, 38, 39, 40, 41, 42, 45, 46

failure detect · 38
clock failure · 38, 45
connector · 6, 12, 31, 35, 45, 46, 63

test · 31, 45
control

protective control · 61
control function · 60
conversion · 39, 40, 49, 50, 59, 60
counter · 63, 64
CPU · 49

registers · 44, 63
CRC · 45, 59

D

debounce · 60
defect · 60
digital

input · 41, 59
output · 59

digital output · 59
DMA · 17, 62

E

engine · 21
kill · 21

exception · 71
external communication · 72

F

failure · 13, 39, 45, 60, 73
fault · 13, 45, 60, 61, 63, 71
fault tolerant · 60
filter · 5, 22, 36, 38, 40, 49, 50, 51

DC removal · 22, 50
IIR · 49, 50
low-pass · 38

G

GPIO · 38, 41, 44, 59

H

hour meter · 64

I

I
2
C · 38, 46, 62

initialization · 61
integrity check · 42, 45, 61
interrupt · 17, 62, 63, 71

IRQ · 62, 70

L

load dump · 35
logic · 60

M

manufacturer · 38
mode

disabled · 60
model · ii, 28, 34, 38, 44, 46
motor · 31, 33, 37, 44, 62
motor driver · 31, 33

R E Q U I R E M E N T S · 2 0 1 8 . 0 5 . 3 0 75

N

NMI · 45, 62, 63
NVRAM

EEPROM · 39, 59
erase · 42
flash · 42, 60

O

operating conditions · 51, 60
abnormal · 60, 71

operator presence · 59

P

peripheral lock · 44, 63
power management · 27, 33
protection

load dump · 35
PWM · 44, 46, 60, 62

break input · 44

Q

qualifier
volatile · 39, 42, 60, 63

R

RAM · 45, 61, 62
parity check · 45

requirement · 2, 3, 4, 9, 10, 11, 12, 13, 14, 23, 24,
25, 26, 30, 40, 42, 44, 46, 47, 55, 57, 60, 61, 73

reset · 21, 28, 31, 41, 44, 63, 70, 71
rotor · 63

S

sampling · 39, 40, 46, 50, 60, 61
service · 62, 63, 71
signal · 22, 28, 30, 32, 33, 36, 37, 39, 40, 41, 44, 47,

48, 49, 51, 53, 54, 60, 63
single event upset · 42, 71
SMBus · 62
solenoid · 34
SPI · 38, 41, 42, 46
SRAM

parity check · 45, 61
state · 9, 10, 12, 13, 20, 21, 22, 23, 24, 35, 41, 43,

44, 45, 51, 52, 54, 60, 61, 71
storage · 42, 46, 59, 60, 61, 62, 63, 73

data retention · 60
protection · 62

supervisor · 44

T

temperature · 37, 42, 61
testing · 2, 3, 16, 26, 27, 31, 32, 41, 42, 45, 48, 51,

53, 60, 61, 73
test point · 31, 32, 41, 51
tester · 11
white-box · 53, 61

threshold · 52, 54
timer · 23, 45, 48, 53, 54, 62, 63, 71

watchdog · 63, 71
timing · 25, 41, 72
Todo · 37

TBD · 3, 13, 19, 21, 31, 37, 38, 39, 43, 48, 69

V

Vcc · 35
vendor

ST · 40, 59
vituperative

ass · 43

